Atmoswater Research
+1 604-985-3720
  • Home
  • Atmoswater Blog
  • About
  • Contact
  • Books (HVAC&R)
    • Water-from-Air Book
  • Useful Lists
    • Manufacturers and Suppliers of Atmospheric Water Generators & Water-from-Air Machines
    • Case Studies About Water-from-Air
    • Atmospheric Water Generator or Water-from-Air Machine Market Research Links
    • Projects about Water-from-Air
    • Articles about Water-from-Air >
      • ScienceDaily Article Links
    • Patents about Water-from-Air and Atmospheric Water Generators
    • Water Lexicon
  • Links, FAQ, & Video
    • Drinking-water Industry Organizations Links
    • Map of the Water-from-Air Resource
    • Topic Links for Water-from-Air
    • Trends for Water-from-Air
    • Water Industry News Links
    • Water Organizations Links
    • Water-from-Air FAQ
    • Video about Water-from-Air
  • Scientific & Technical Consulting
    • Consulting Physical Geographer
    • Research Services in Climatology, Geomorphology, Hydrology, and Oceanography
    • Translations of Scientific and Technical Documents (Swedish, French)
    • Projects >
      • Our Projects
      • Atmospheric Water Vapour Processing (AWVP)
    • Publications by Roland Wahlgren >
      • Publications List for Roland Wahlgren
      • GSC 77-1A (Beaufort Sea Sediment Cores)
      • M.A. Thesis (Beaufort Sea Ice-scour Tracks)
      • GSC 79-1B (Beaufort Sea Ice-scour Tracks)
      • Waterlines (Water-from-Air)
      • Water Research (Water-from-Air)
      • Acta Hort. (Water-from-Air)
      • CWWA Conference 2014
    • Load Research (for BC Hydro)
    • Ice-scour tracks (Beaufort Sea)
  • Atmoswater Shop
  • Terms, Conditions, Privacy

Impact on the atmospheric water reservoir from using water-from-air systems: an update

27/9/2021

0 Comments

 
Picture
As of today, 7.9 billion people live on planet Earth according to Worldometer (snip from their website page http://srv1.worldometers.info/watch/world-population/
Picture
The figure above shows the difference field of specific humidity resulting from subtracting the composite means (Jan to Dec) for the 30 year period 1951 to 1980 from the 39 year period 1981 to 2019, Several pools of higher specific humidity +2 g/kg are noticeable. These are likely related to climate change. Drying of about -2 g/kg is noticeable over the Sahara and Gobi deserts---more likely to be related to climate change than use of HVAC equipment. Overall, specific humidity has been remarkably stable (+/-1 g/kg) over the past seven decades. Reference: NCEP Reanalysis Derived data provided by the NOAA/OAR/ESRL PSL, Boulder, Colorado, USA, from their website at https://psl.noaa.gov/
My previously published comments (Wahlgren, 2018, 51-53 and blog post of 29/10/2020) about the impact on the atmospheric water reservoir from using water-from-air systems need to be updated as follows because of human population growth.

The atmosphere contains 15.5 x 10^12 cubic metres of water or 0.001% of the Earth's total water reservoir volume of 1.46 x 10^18 cubic metres. Water reservoirs include the atmosphere, ice and snow, biomass, surface water, underground water, and the oceans. Even if all 7.9 x 10^9 people on Earth used water from water vapour processors at the rate of 50 litres per day, they would consume temporarily only 0.0025% of the available atmospheric water. In 2100, when population is expected to be 10.9  x 10^9, this worst case impact would rise slightly to 0.0035%. 

The most recent water cycle information I could find was from the AGU (1995). The per capita water consumption value of 50 L/day was suggested by Gleick (1998) for domestic water requirements (drinking, kitchen, laundry, and bath). Today's population estimate was from Worldometers. The year 2100 population estimate was from Wikipedia:Projections of population growth.

Water vapour, the gas phase of water, diffuses along water vapour pressure gradients to zones of lower water vapour pressure. If a lot of water vapour was condensed into liquid water in a specific region such as a city, for example, water vapour from outside the region would flow into the region. No net loss of atmospheric water vapour would be observed in the city.

Water consumed for domestic water requirements does not exit from the water cycle. Within several days the liquid water that is used or with-held temporarily from the water cycle would be returned to the environment to evaporate into atmospheric water vapour.

Using a new technology such as atmospheric water vapour processing in drinking-water-from-air machines may have other impacts on Nature. These include
  • possibility for more people to live in a region, increasing the population density;
  • increased sewage and other waste (including material waste from machines which have reached the end of their operational life);
  • increased energy use (to operate the machines); and
  • increased material use (to build the machines).

A recent analysis by me about the direct environmental impact of widespread use of dehumidifiers and air-conditioners dripping condensate from millions of machines since about 1950 showed that the specific humidity field at Earth's surface has been remarkably stable over the past 70 years (see the figure above and the associated earlier blog post). In fact, Wikipedia: Air Conditioning stated, "According to the IEA [International Energy Agency], as of 2018, 1.6 billion air conditioning units were installed,...." The same Wikipedia article said, "Innovations in the latter half of the 20th century allowed for much more ubiquitous air conditioner use. In 1945, Robert Sherman of Lynn, Massachusetts invented a portable, in-window air conditioner that cooled, heated, humidified, dehumidified, and filtered the air."

In summary, scenarios involving the entire human population using processors of atmospheric water vapour are unlikely, so it is also unlikely that water-from-air technologies will cause a drier atmosphere in the context of the Earth’s water cycle and natural processes of water transport and distribution.

References:

AGU (1995). Water vapor in the climate system. Special Report. Washington, DC: American Geophysical Union.

Gleick, P. H. (1998). The World's Water 1998-1999: The Biennial Report on Freshwater Resources. Washington, DC: Island Press.

Wahlgren, R. V. (2018). Water-from-Air Quick Guide. Second edition (reprinted July 2018 with minor corrections). North Vancouver, BC, Canada: Atmoswater Research.
​ 
0 Comments



Leave a Reply.

    Roland Wahlgren

    I have been researching and developing drinking-water-from-air technologies since 1984. As a physical geographer, I strive to contribute an accurate, scientific point-of-view to the field.

    Discover previous interesting and informative scientific/technical posts by clicking "<<Previous" at the bottom of each page!

    Buy the
    Drinking-Water-from-Air Technology: Investor's Guide ("WFA 101").


    Archives

    December 2022
    September 2022
    August 2022
    December 2021
    November 2021
    September 2021
    October 2020
    August 2020
    July 2020
    April 2020
    March 2020
    February 2020
    November 2019
    October 2019
    September 2019
    August 2019
    April 2019
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    March 2018
    August 2016
    June 2016
    March 2015
    November 2014
    September 2014
    July 2014
    March 2014
    February 2014
    January 2014
    December 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    October 2012
    September 2012
    August 2012
    June 2012
    April 2012
    April 2011
    March 2011
    January 2011

    Categories

    All
    Absorption Cooling
    Advertising
    Afghanistan
    Algeria
    American Samoa
    Anguilla
    Arizona
    Aruba
    Atlas
    Atmospheric Water Generator (AWG)
    Australia
    Azores
    Bahrain
    Belize
    Bermuda
    Brazil
    Business
    California
    Canary Islands
    Cape Verde
    Caribbean
    Case Studies
    Cayman Islands
    Chile
    China
    Colombia
    Condensate
    COVID 19
    COVID-19
    Cyprus
    Desalination
    Design
    Dew Point
    Dew-point
    Dominican Republic
    Drinking Water Industry
    Drought
    Efficiency
    Egypt
    Environmental Impact
    Finance
    Florida
    Gabon
    Ghana
    GHG-IQ
    Global Water Works Connect
    Healthcare Facilities
    Hong Kong
    Hourly Model
    Humidity Ratio
    India
    Indonesia
    Inventions
    Irrigation
    Israel
    Jackson
    Jamaica
    Jordan
    Kenya
    Kiribati
    Kuwait
    Libya
    Liquid Desiccant
    Load Research
    Malawi
    Malaysia
    Malta
    Markets
    Mauritius
    Metal Organic Framework
    Metal-organic Framework
    Mexico
    Mississippi
    Morocco
    Oklahoma
    Panama
    Patents
    Philippines
    Qatar
    Sanitation
    Schools
    SDG6
    Singapore
    Solar PV
    Spain
    Standard Test Conditions
    Sweden
    Texas
    Thermoelectric (Peltier)
    Tunisia
    Turks And Caicos Islands
    United Arab Emirates
    Venezuela
    Video Presentations
    Water Abundance XPrize
    Water Bottling
    Water Cost
    Water Crisis
    Water From Air
    Water-from-air
    Water Pseudo Science
    Water Quality
    Water Scarcity
    Water Science
    Water Vapor Density
    Wfa Hourly Analysis

    RSS Feed

    View my profile on LinkedIn
    Follow atmoswater on Twitter
    Tweets by @atmoswater
Copyright 1999–2023, Roland V. Wahlgren, Atmoswater™ Research. Atmoswater™ is a trademark claimed by Roland V. Wahlgren