Atmoswater Research
+1 604-985-3720
  • Home
  • Atmoswater Blog
  • About
  • Contact
  • Books (HVAC&R)
    • Water-from-Air Book
  • Useful Lists
    • Manufacturers and Suppliers of Atmospheric Water Generators & Water-from-Air Machines
    • Case Studies About Water-from-Air
    • Atmospheric Water Generator or Water-from-Air Machine Market Research Links
    • Projects about Water-from-Air
    • Articles about Water-from-Air >
      • ScienceDaily Article Links
    • Patents about Water-from-Air and Atmospheric Water Generators
    • Water Lexicon
  • Links, FAQ, & Video
    • Drinking-water Industry Organizations Links
    • Map of the Water-from-Air Resource
    • Topic Links for Water-from-Air
    • Trends for Water-from-Air
    • Water Industry News Links
    • Water Organizations Links
    • Water-from-Air FAQ
    • Video about Water-from-Air
  • Scientific & Technical Consulting
    • Consulting Physical Geographer
    • Research Services in Climatology, Geomorphology, Hydrology, and Oceanography
    • Translations of Scientific and Technical Documents (Swedish, French)
    • Projects >
      • Our Projects
      • Atmospheric Water Vapour Processing (AWVP)
    • Publications by Roland Wahlgren >
      • Publications List for Roland Wahlgren
      • GSC 77-1A (Beaufort Sea Sediment Cores)
      • M.A. Thesis (Beaufort Sea Ice-scour Tracks)
      • GSC 79-1B (Beaufort Sea Ice-scour Tracks)
      • Waterlines (Water-from-Air)
      • Water Research (Water-from-Air)
      • Acta Hort. (Water-from-Air)
      • CWWA Conference 2014
    • Load Research (for BC Hydro)
    • Ice-scour tracks (Beaufort Sea)
  • Atmoswater Shop
  • Terms, Conditions, Privacy

Using thermoelectric (Peltier) #technology in atmospheric #water generators

13/3/2018

0 Comments

 
​Thermoelectric cooling technology has had wide appeal as an alternative to mechanical refrigeration cooling technology for at least twenty years. Thermoelectric systems avoid the use of hazardous, harmful refrigerants and noisy compressors​. Low coefficient of performance (COP, in the range of 0.9–1.2) is the main problem preventing widespread use of thermoelectric cooling especially for systems requiring large cooling capacities (Riffat & Ma, 2004). A COP of 1.2151, achieved using a multistage thermoelectric module, was considered "remarkable" by Patel and others (2016)  Only smaller capacity niche applications have been commercialized.

There have been several peer-reviewed papers published and patents issued for atmospheric water generators or dehumidifiers using thermoelectric cooling devices which use the Peltier effect. Some information and products have been featured on websites. Each reference below represents a clickable link to more information.

Examples of papers

Atta, R. M. (2011). Solar Water Condensation Using Thermoelectric Coolers. International Journal of Water Resources and Arid Environments, 1(2), 142–145.

Milani, D., Abbas, A., Vassallo, A., Chiesa, M., & Bakri, D. A. (2011). Evaluation of using thermoelectric coolers in a dehumidification system to generate freshwater from ambient air. Chemical Engineering Science 66(12), 2491-2501.

Muñoz-Garcia, M. A., Moreda, G. P., Raga-Arroyo, M. P., and Marin-González, O. (2013). Water harvesting for young trees using Peltier modules powered by photovoltaic solar energy. Computers and Electronics in Agriculture 93, 60–67.

Nandy, A., Saha, S., Ganguly, S. & Chattopadhyay, S. (2014). A Project on Atmospheric Water Generator with the Concept of Peltier Effect. International Journal of Advanced Computer Research, 4, 481–486.

Suryaningsih, S. & Nurhilal, O. (2016). Optimal design of an atmospheric water generator (AWG) based on thermo-electric cooler (TEC) for drought in rural area. AIP Conference Proceedings 1712, 030009 (2016); doi: 10.1063/1.4941874

Davidson, K. B., Asiabanpour, B., & Almusaied, Z. (2017). Applying Biomimetic Principles to Thermoelectric Cooling Devices for Water Collection. Environment and Natural Resources Research 7(3), 27–35.

Examples of Patents

Peeters, J. P. and Berkbigler, L. W. 1997. Electronic household plant watering device. United States Patent 5,634,342. [expired, now in public domain]

Wold, K. F. 1997. Plant watering device and method for promoting plant growth. United States Patent 5,601,236. [expired, now in public domain]

Reidy, J. J. 2008. Thermoelectric, High Efficiency, Water Generating Device. United States Patent 7,337,615.

​Waite, R. K. & Neumann, A. (2017). Water production, filtration, and dispensing system. United States Patent 9,731,218 B2.

​

Examples of Websites

The "instructables" website published the article "How to Make a Dehumidifier (Thermoelectric Cooling) in 2016.

Amazon.com sells several models of "thermoelectric portable compact dehumidifiers".
​
​
References

Patel, J., Patel, M., Patel, J., & Modi, H. (2016) Improvement in the COP of Thermoelectric Cooler. International Journal of Scientific & Technology Research 5(5), 73–76.
​
Riffat, S. B. & Ma, X. (2004) Improving the coefficient of performance of thermoelectric cooling systems: a review. Int. J. Energy Res. 28: 753-768 (DOI:10.1002/er.991)
0 Comments

Atmospheric #water generators—defining the target #market

1/3/2018

2 Comments

 
Picture--world map showing 32 cities with water scarcity
Thirty-two cities that have been identified as likely to run out of sustainable natural water supplies by the Nature Conservancy and the BBC (see text). Click on map to enlarge.
The target market for atmospheric water generators, in the broadest sense, are people in locations with perennial water shortages due to population growth, climate change, and lack of enough sustainable surface or groundwater within a radius of 100 km. The reference for these defining conditions is: Lalasz, R. (2011). New Study: Billions of City Dwellers in Water Shortage by 2050; retrieved from https://blog.nature.org/conservancy/2011/03/28/pnas-billions-city-urban-water-shortage-2050-nature-conservancy/. A study led by the Nature Conservancy defined these conditions. At least 23 cities fit these conditions. From north to south they are: Shenyang, Beijing, Tehran, Haifa, Tel Aviv, Jerusalem, Lahore, Delhi, Dubai, Riyadh, Abu Dhabi, Kolkata, Mexico City, Mumbai, Hyderabad, Manila, Chennai, Bengaluru, Caracas, Lagos, Cotonou, Abidjan, and Johannesburg. Some small tropical islands such as Grand Turk, Turks and Caicos Islands and Sal Island, Cabo Verde also fit these defining conditions. Recent reports such as “The 11 cities most likely to run out of drinking water - like Cape Town” by the BBC (http://www.bbc.com/news/world-42982959; 11 February 2018) suggest that we could add other cities to the Nature Conservancy’s list. From the BBC report here are nine more cities to add to the list of those likely to run out of sustainable natural water supplies: Cape Town, São Paulo, Cairo, Jakarta, Moscow, Istanbul, London, Tokyo, and Miami.Water-from-Air Resource Charts are available for all the highlighted locations mentioned in this post—just click on the location name to go to the relevant page in the Atmoswater Shop. By the way, if you like bargains, the charts for the 23 water-scarce cities listed by the Nature Conservancy are all included in the book, Water-from-Air Quick Guide.
2 Comments

New #Water-from-Air Resource Charts for #India added

1/3/2018

0 Comments

 
Several new water-from-air resource charts for cities in India are now available for purchase and download at ​https://www.atmoswater.com/store/c130/India.html. The cities include Bikaner, Dhubri, Dibrugarh, Kota, Srinagar, and Trivandrum. 
0 Comments

    Roland Wahlgren

    I have been researching and developing drinking-water-from-air technologies since 1984. As a physical geographer, I strive to contribute an accurate, scientific point-of-view to the field.

    Discover previous interesting and informative scientific/technical posts by clicking "<<Previous" at the bottom of each page!

    Buy the
    Drinking-Water-from-Air Technology: Investor's Guide ("WFA 101").


    Archives

    December 2022
    September 2022
    August 2022
    December 2021
    November 2021
    September 2021
    October 2020
    August 2020
    July 2020
    April 2020
    March 2020
    February 2020
    November 2019
    October 2019
    September 2019
    August 2019
    April 2019
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    March 2018
    August 2016
    June 2016
    March 2015
    November 2014
    September 2014
    July 2014
    March 2014
    February 2014
    January 2014
    December 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    October 2012
    September 2012
    August 2012
    June 2012
    April 2012
    April 2011
    March 2011
    January 2011

    Categories

    All
    Absorption Cooling
    Advertising
    Afghanistan
    Algeria
    American Samoa
    Anguilla
    Arizona
    Aruba
    Atlas
    Atmospheric Water Generator (AWG)
    Australia
    Azores
    Bahrain
    Belize
    Bermuda
    Brazil
    Business
    California
    Canary Islands
    Cape Verde
    Caribbean
    Case Studies
    Cayman Islands
    Chile
    China
    Colombia
    Condensate
    COVID 19
    COVID-19
    Cyprus
    Desalination
    Design
    Dew Point
    Dew-point
    Dominican Republic
    Drinking Water Industry
    Drought
    Efficiency
    Egypt
    Environmental Impact
    Finance
    Florida
    Gabon
    Ghana
    GHG-IQ
    Global Water Works Connect
    Healthcare Facilities
    Hong Kong
    Hourly Model
    Humidity Ratio
    India
    Indonesia
    Inventions
    Irrigation
    Israel
    Jackson
    Jamaica
    Jordan
    Kenya
    Kiribati
    Kuwait
    Libya
    Liquid Desiccant
    Load Research
    Malawi
    Malaysia
    Malta
    Markets
    Mauritius
    Metal Organic Framework
    Metal-organic Framework
    Mexico
    Mississippi
    Morocco
    Oklahoma
    Panama
    Patents
    Philippines
    Qatar
    Sanitation
    Schools
    SDG6
    Singapore
    Solar PV
    Spain
    Standard Test Conditions
    Sweden
    Texas
    Thermoelectric (Peltier)
    Tunisia
    Turks And Caicos Islands
    United Arab Emirates
    Venezuela
    Video Presentations
    Water Abundance XPrize
    Water Bottling
    Water Cost
    Water Crisis
    Water From Air
    Water-from-air
    Water Pseudo Science
    Water Quality
    Water Scarcity
    Water Science
    Water Vapor Density
    Wfa Hourly Analysis

    RSS Feed

    View my profile on LinkedIn
    Follow atmoswater on Twitter
    Tweets by @atmoswater
Copyright 1999–2023, Roland V. Wahlgren, Atmoswater™ Research. Atmoswater™ is a trademark claimed by Roland V. Wahlgren