Atmoswater Research
+1 604-985-3720
  • Home
  • Atmoswater Blog
  • About
  • Contact
  • Books (HVAC&R)
    • Water-from-Air Book
  • Useful Lists
    • Manufacturers and Suppliers of Atmospheric Water Generators & Water-from-Air Machines
    • Case Studies About Water-from-Air
    • Atmospheric Water Generator or Water-from-Air Machine Market Research Links
    • Projects about Water-from-Air
    • Articles about Water-from-Air >
      • ScienceDaily Article Links
    • Patents about Water-from-Air and Atmospheric Water Generators
    • Water Lexicon
  • Links, FAQ, & Video
    • Drinking-water Industry Organizations Links
    • Map of the Water-from-Air Resource
    • Topic Links for Water-from-Air
    • Trends for Water-from-Air
    • Water Industry News Links
    • Water Organizations Links
    • Water-from-Air FAQ
    • Video about Water-from-Air
  • Scientific & Technical Consulting
    • Consulting Physical Geographer
    • Research Services in Climatology, Geomorphology, Hydrology, and Oceanography
    • Translations of Scientific and Technical Documents (Swedish, French)
    • Projects >
      • Our Projects
      • Atmospheric Water Vapour Processing (AWVP)
    • Publications by Roland Wahlgren >
      • Publications List for Roland Wahlgren
      • GSC 77-1A (Beaufort Sea Sediment Cores)
      • M.A. Thesis (Beaufort Sea Ice-scour Tracks)
      • GSC 79-1B (Beaufort Sea Ice-scour Tracks)
      • Waterlines (Water-from-Air)
      • Water Research (Water-from-Air)
      • Acta Hort. (Water-from-Air)
      • CWWA Conference 2014
    • Load Research (for BC Hydro)
    • Ice-scour tracks (Beaufort Sea)
  • Atmoswater Shop
  • Terms, Conditions, Privacy

Water-from-Air Market Analyses: Part 3 of 7—Household Sanitation

24/8/2022

0 Comments

 
​There are seventy-two countries, areas, or territories in which less than 75% of the population lives in households having safely managed sanitation (Table 3, below). Safely managed sanitation has these two properties: improved sanitation facility not shared with other households and excreta are disposed of in situ or transported and treated off-site.

Many countries in the drinking water list (Table in blog post 2 of 7) do not appear in the sanitation list (Table 3, below) because of gaps in the national sanitation data. The countries so affected do, however, have national statistics for “latrines and other”, “septic tanks”, and “sewer connections”. For the record, 16 countries were expected to be in both tables but were not (in order of lowest to highest national proportion of safely managed drinking water): Rwanda, Uganda, Afghanistan, Cambodia, Côte d’Ivoire, Pakistan, Congo, Tajikistan, Nicaragua, Guatemala, Wallis and Futuna Islands, Uzbekistan, Democratic People’s Republic of Korea, Kyrgyzstan, Albania, and Republic of Moldova.

Surprisingly, the list in the Sanitation Table below contains some countries that are in the High-income group as defined by their nominal values of Gross National Income (GNI) per capita in 2020‒2021 [>US$12,695; Atlas method— indicator of income developed by the World Bank; Wikipedia: List of countries and dependencies by GNI (nominal) per capita, USD]. These high-income group countries with relatively great household sanitation challenges are: Australia; China, Macao SAR; Croatia; Norway; Saudi Arabia; and Slovenia. Because of their relatively high per capita income status, these countries are good initial marketing targets for versions of AWGs designed to provide clean water for sanitation applications.
Picture of table showing national sanitation data related to the United Nations Sustainable Development Goal 6.
Table 3: Seventy-two countries, areas, or territories with household sanitation safely managed less than 75%. This data is for 120 out of 234 countries in the database. For 114 countries there is no data for safely managed household sanitation. The image is an excerpt from a larger table. The blog author condensed and sorted the data according to lowest to highest national proportion of safely managed. Data source: Progress on household drinking water, sanitation and hygiene 2000-2020: five years into the SDGs. Geneva: World Health Organization (WHO) and the United Nations Children’s Fund (UNICEF), 2021. Licence: CC BY-NC-SA 3.0 IGO. Data table downloads (Microsoft Excel® format) are available at https://washdata.org/data/downloads#. Some high-income countries are in this list (see text). Data gaps are indicated by a dash (-).
​In Table 1 (Blog post 1 of 7 in this series), the shortfall for safely managed drinking water is 2 billion people. The shortfall for safely managed sanitation is almost twice as many people, 3.6 billion. Why? To understand the commercial potential of AWGs and formulate marketing strategies it is crucial to know the reasons. In 2014, a blog post titled “Water and Sanitation for Health: Why is Progress Slow?” was published by Q. Wodon, Lead Economist, Education Sector, World Bank and C. T. Nkengne, Economist, Poverty Global Practice, World Bank Group
(https://blogs.worldbank.org/health/water-and-sanitation-health-why-progress-slow). Their main points help to answer why:
  • “Several million people, many of them [children], die from diarrheal diseases every year. Many of these deaths can be attributed to unsafe water, poor sanitation and poor hygiene”;
  • Supply factors are “at play” including “lack of infrastructure functionality”, “lack of local responsibility”, water scarcity;
  • “[One] should not underestimate the role of culture, tradition, and behaviors”;
  • “Adequate sanitation is also essential for health. Yet again, in many low-income countries, only a small minority of households has access to improved sanitation. Part of this may be due to a low priority assigned to sanitation in terms of public funding. But part of it is also due to cultural and traditional norms, as well as lack of income or time. Poor terrain or soil type and a lack of land to build latrines also play a role in some areas”;
  • “Focus group participants were asked why they pay for cell phones but not for latrines. They responded that latrines have a much larger one-time cost, but also that having a cell phone is a sign of modernity and important for one’s status in communities. Clearly, more needs to be done to convince households of the importance of latrines, for example through sanitation marketing campaigns”;
  • “Finally, in terms of health benefits, there is perhaps no more cost-effective intervention tha[n] the promotion of hand washing, but only a small minority of Uganda’s households (less than one in ten) has a facility to wash hands with both soap and water. Information campaigns are held, but, as a participant in focus groups noted, “many of the community members do not attend them, saying that these trainings are a waste of time”;
  • “hand washing is viewed as a very strange practice to the local culture”; and
  • “Uganda has invested over the years in safe water and sanitation. But the constraints faced by households and communities are complex. The qualitative work implemented in 14 districts suggests that solutions often must be context- and community-specific.”

​I have noted, over many years in the water-from-air field, that academic researchers and businesses are focused almost totally on providing potable water—sanitation gets mentioned rarely, if at all. But clean water is essential for personal hygiene for men, women, children, and infants—using polluted water or not having any water at all for sanitation applications has the potential for causing dreadful health problems. Designing versions of AWGs specifically for personal hygiene could be a competitive advantage that would also improve the quality of life for millions of people.
0 Comments

    Roland Wahlgren

    I have been researching and developing drinking-water-from-air technologies since 1984. As a physical geographer, I strive to contribute an accurate, scientific point-of-view to the field.

    Discover previous interesting and informative scientific/technical posts by clicking "<<Previous" at the bottom of each page!

    Buy the
    Drinking-Water-from-Air Technology: Investor's Guide ("WFA 101").


    Archives

    December 2022
    September 2022
    August 2022
    December 2021
    November 2021
    September 2021
    October 2020
    August 2020
    July 2020
    April 2020
    March 2020
    February 2020
    November 2019
    October 2019
    September 2019
    August 2019
    April 2019
    November 2018
    October 2018
    September 2018
    August 2018
    July 2018
    June 2018
    May 2018
    March 2018
    August 2016
    June 2016
    March 2015
    November 2014
    September 2014
    July 2014
    March 2014
    February 2014
    January 2014
    December 2013
    October 2013
    September 2013
    August 2013
    July 2013
    June 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    December 2012
    October 2012
    September 2012
    August 2012
    June 2012
    April 2012
    April 2011
    March 2011
    January 2011

    Categories

    All
    Absorption Cooling
    Advertising
    Afghanistan
    Algeria
    American Samoa
    Anguilla
    Arizona
    Aruba
    Atlas
    Atmospheric Water Generator (AWG)
    Australia
    Azores
    Bahrain
    Belize
    Bermuda
    Brazil
    Business
    California
    Canary Islands
    Cape Verde
    Caribbean
    Case Studies
    Cayman Islands
    Chile
    China
    Colombia
    Condensate
    COVID 19
    COVID-19
    Cyprus
    Desalination
    Design
    Dew Point
    Dew-point
    Dominican Republic
    Drinking Water Industry
    Drought
    Efficiency
    Egypt
    Environmental Impact
    Finance
    Florida
    Gabon
    Ghana
    GHG-IQ
    Global Water Works Connect
    Healthcare Facilities
    Hong Kong
    Hourly Model
    Humidity Ratio
    India
    Indonesia
    Inventions
    Irrigation
    Israel
    Jackson
    Jamaica
    Jordan
    Kenya
    Kiribati
    Kuwait
    Libya
    Liquid Desiccant
    Load Research
    Malawi
    Malaysia
    Malta
    Markets
    Mauritius
    Metal Organic Framework
    Metal-organic Framework
    Mexico
    Mississippi
    Morocco
    Oklahoma
    Panama
    Patents
    Philippines
    Qatar
    Sanitation
    Schools
    SDG6
    Singapore
    Solar PV
    Spain
    Standard Test Conditions
    Sweden
    Texas
    Thermoelectric (Peltier)
    Tunisia
    Turks And Caicos Islands
    United Arab Emirates
    Venezuela
    Video Presentations
    Water Abundance XPrize
    Water Bottling
    Water Cost
    Water Crisis
    Water From Air
    Water-from-air
    Water Pseudo Science
    Water Quality
    Water Scarcity
    Water Science
    Water Vapor Density
    Wfa Hourly Analysis

    RSS Feed

    View my profile on LinkedIn
    Follow atmoswater on Twitter
    Tweets by @atmoswater
Copyright 1999–2023, Roland V. Wahlgren, Atmoswater™ Research. Atmoswater™ is a trademark claimed by Roland V. Wahlgren