High-Rise Residential Building Weather Sensitivity for British Columbia Case Studies outside Vancouver and Burnaby

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis BC Hydro, Burnaby, British Columbia

June 2010

Contents

Section	Page (Slide number)
Context and Important Findings	4
Introduction to case studies outside Vancouver/Burnaby	5
Project and Data Set Specifications	6
Weather Sensitivity, U-factor, and R-value	10
Special Case Studies for Buildings with Gas Heating Data	15
Special Case Studies for Buildings with Gas Heating Data—Coquitlam	18
Special Case Studies for Buildings with Gas Heating Data—Surrey	28
Method for inferring gas data	38
Case Study: Prince George	47
Case Studies: Nanaimo	49

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Contents

Section	Page (Slide number)
Case Studies: Victoria	53
Case Studies: Abbotsford	67
Case Studies: Coquitlam	74
Case Studies: North Vancouver—LEED™ Silver Certified	80
Case Studies: North Vancouver	82
Case Studies: Surrey	86
Case Studies: Richmond	101
Conclusions	116
References	117

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Context and Important Findings

Audience: Managers, analysts and forecasters concerned with effect of increasing numbers of high-rise residential buildings on the weather sensitivity of BC Hydro's distribution system.

BC Hydro Context

- There is sparse quantitative knowledge about weather sensitivity of high-rise residential buildings; Need to know relationship between weather-driven consumption and height
- Over and underestimating relationship between consumption and weather events (in terms of degree-days) has costs in BC Hydro's business model
- More accurate consumption forecasting is beneficial financially for BC Hydro

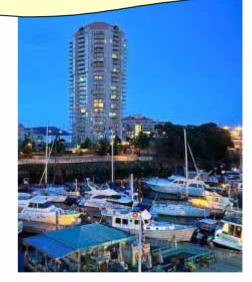
Important Findings

- Weather-driven electrical energy consumption in a sample of 35 electrically heated residential high-rise buildings outside of Vancouver/Burnaby often is stable with height (69%), sometimes decreases with height (28%), or rarely increases with height (3%).
- Analyses of weather sensitivity of electrical heating is confounded by natural gas heating of building common areas. This heat infiltrates suites that also have electrical baseboard heaters.
- When gas heating data is available for a building the relative proportions of gas and electric heating can be estimated, as can the efficiency of the gas heating system.
- Missing gas data can be inferred if: (1) weather sensitivity of electric energy consumption is known and (2) a reasonable assumption is made about a building enclosure's thermal transmissivity.
- <u>Rehabilitation of building enclosures of gas/electric buildings reduces the proportion of gas</u> <u>consumed but increases the proportion of electricity consumed.</u>

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

High-Rise Residential Building Weather Sensitivity for BC

Introduction to case studies outside Vancouver/Burnaby


Load analysis accuracy may improve with better understanding of high-rise (tall) building weather sensitivity in the context of the heating degree-day climate of BC's urban centres. BC Hydro's working definition of a tall building is at least 12 storeys with at least 80 apartment suites. Most of the buildings in this study stand alone—lone pines rather than part of a pine forest—in contrast to buildings in Vancouver/Burnaby. This project used BC Hydro's electrical energy consumption data set from Apr 2004 to Sep 2009 for purely apartment buildings. RDH Building Engineering Ltd. kindly supplied thermal modeling results and spreadsheet analyses for several buildings.

Analyses of weather sensitivity in this report are normalized to unit area dimensions unlike our earlier report which used aggregated data (Wahlgren and Bains, 2010). Weather sensitivities are represented by the floor-by-floor steady-state thermal transmittance with dimensions [W / $(m^2 \cdot K)$].

Gas heating data was available for two case studies, one in Coquitlam, the other in Surrey.

Companion reading:

Wahlgren, R. and Bains, H. (2010) Tall Building Climatology for British Columbia (Residential): Overview and analyses of aggregated data. Available in BC Hydro's online Load Research Library http://bchx/library/ViewAttachment.asp?d=2946

Source: http://nanaimocondo.ca/cameron-island/

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Project and Data Set Specifications (1 of 4)

Project and Data Set Specifications were written by Harinder Bains, Sr. Energy Load Advisor

[The] Excel file contains **256 "tall"** residential apartment buildings. My criterion for a "tall" building is that the building has to be **at least 12 floors** (storeys) high with **at least 80 Apartment Suites**. I picked buildings that are at least 6 years old (based on our building age logic) and those that are quite clean with respect to data quality (pure apartment buildings with common use). Based on these criteria I was able to **obtain 256 buildings** (33,864 Apartment Suites in total) – majority of these buildings are from the Lower Mainland (Metro Vancouver) - breakdown by region/service town is as follows:

"The ASHRAE Technical Committee for Tall Buildings defines *tall buildings* as those higher than 91 m [30 stories]" (Ross, 2004; cited in Ellis and Torcellini, 2005)

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Project and Data Set Specifications (2 of 4)

Lower Mainland (total of 244 buildings)

- Vancouver 157 buildings
- Not used in this study
- Burnaby 50 buildings
- Richmond 9 buildings [7 electric, 2 non-electric]
- Surrey 9 buildings [9 electric]
- North Vancouver 6 buildings [2 electric, 4 non-electric]; 1 LEED building was added to original dataset
- Coquitlam 5 buildings [4 electric, 1 non-electric]
- Abbotsford 4 buildings [3 electric, 1 non-electric]
- West Vancouver 3 buildings [3 non-electric]
- Maple Ridge 1 building [non-electric]
- Vancouver Island (total of 11 buildings)
 - Victoria 9 buildings [7 electric, 2 non-electric]
 - Nanaimo 2 buildings [2 electric]

Northern (total of 1 building)

Prince George – 1 building [non-electric]²

The Prince George building was the only non-electric building analyzed in this study. It illustrated the minimal weather sensitivity of electric energy consumption in buildings heated solely by gas.

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 7/117

Electrically-heated buildings outside Vancouver/Burnaby n = 35

Suites are heated by electric baseboard heaters; Common areas (hallways, lobbies) are heated by gas

Project and Data Set Specifications (3 of 4)

As mentioned above, the minimum number of floors (storeys) is 12 – and the maximum number of floors is 46. I have separated out the common/other use by the following "Floor Number" codes (fake floor numbers are created to capture common use consumption by rate/premise codes):
Floor Number = 90 shows consumption for common use (rate 1111 with premise code of 140)
Floor Number = 91 shows consumption for common use (rate 1220 with premise code of 140)
Floor Number = 92 shows consumption for common use (rate 1220 with premise code of 141)
Floor Number = 93 shows consumption for common use (rate 1200 with premise code of 140)
Floor Number = 94 shows consumption for common use (rate 1200 with premise code of 141)
Floor Number = 95 shows consumption for common use (rate 1210 with premise code of 141)
Floor Number = 95 shows consumption for common use (rate 1210 with premise code of 140)
Floor Number = 96 shows consumption for common use (rate 1210 with premise code of 141)
Floor Number = 97 shows consumption for common use (rate 1210 with premise code of 141)
Floor Number = 98 shows consumption for common use (rate 1211 with premise code of 140)
Floor Number = 98 shows consumption for common use (rate 1212 with premise code of 140)
Floor Number = 98 shows consumption for common use (rate 1211 with premise code of 140)
Floor Number = 98 shows consumption for common use (rate 1212 with premise code of 140)
Floor Number = 99 shows consumption for common use (rate 1210 with premise code of 140)
Floor Number = 98 shows consumption for common use (rate 1210 with premise code of 140)
Floor Number = 98 shows consumption for common use (rate 1210 with premise code of 140)
Floor Number = 99 shows consumption for common use (rate 1210 with premise code of 140)

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Project and Data Set Specifications (4 of 4)

The following rate and premise codes are important here:

Rate 1111 - residential common use rate

Rate 1220 – commercial (general under 35 kW) common use rate

Rates 1200/1210/1211 - commercial (general - 35 kW & over) common use rate

Rate 1212 – transformer discount rate

Premise 020 – Apartment Suite

Premise 140 – Apartment Building common use

Premise 141 – Apartment/Business Complex common use

Billing history is summarized, by Floor Number, for each of the 256 buildings. The apartment suite consumption is shown for each floor – by rate code 1101 and premise code 020. The number of apartment suites per floor is indicated by "N" for each month – typically, the N is fairly consistent across time (some months may show it lower by 1 due to no billing). The billing history is provided from April 2004 to September 2009 (5 ½ years). ... bring in weather to **see if there is any relationship between usage and height (floor) of the building.**

In this report, **one storey is equivalent to 3 m (10 ft)**, in accordance with the *Fire Reporting Manual* issued by Office of the Fire Commissioner, Ministry of Public Safety and Solicitor General, Government of British Columbia (Source: http://www.pssg.gov.bc.ca/firecom/fire_reporting_manual/pdf/bh.pdf)

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Weather Sensitivity, U-factor, and R-value

• Equivalence of Weather Sensitivity and U-factor (1/R-value)

• Weather Sensitivity and Fourier's Law

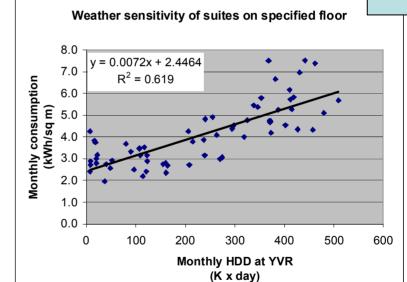
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Equivalence of Weather Sensitivity and U-factor (1/R-value)

 \bullet Weather sensitivity is based preferably on a common area unit (such as m^2 or $ft^2)$ not a variable area unit like 'suite'

• Weather sensitivity value is slope of linear relationship between energy consumption per unit area and degree days

• Dimensional analysis:


Slope = energy intensity / degree day

- Slope = $(kWh/m^2)/(K x day)$
- Slope = $kWh / K \times 24 h \times m^2$
- Slope = $(1000/24) \times (W/K \times m^2)$

U-factor units

• U-factor is steady-state thermal transmittance or coefficient of thermal conductivity

• R-value is steady-state thermal resistance of building components; R = 1 / U

YVR = Vancouver International Airport

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 11/117

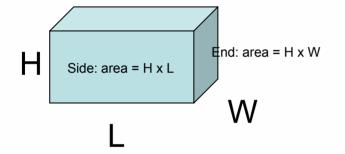
We generated a chart like this for every floor of every building in the data set. The slope of the graph is equivalent to the U-factor.

Weather Sensitivity and Fourier's Law (1 of 2)

Fourier's Law: dq / d θ = - k A (dt / dx); where dq / d θ is rate of heat flow with unit time θ , k is coefficient of thermal conductivity, A is area transverse to heat flow, dt / dx is temperature gradient

Rewrite as, q = U A $(t_1 - t_2)$

where q is heat transfer rate [W], U is overall heat transfer coefficient representing combined heat transfer coefficients along heat flow path [W / ($m^2 \cdot K$)], A is surface area transverse to heat flow [m^2], t_1 is interior temperature (K) and t_2 is exterior temperature [K]. This equation is from ASHRAE (2005, 3.18; equation 36).


Is it valid to equate weather sensitivity, related to floor area via energy intensity, with overall coefficient of heat transfer U, related to properties of ceilings, walls, doors, or windows?

To answer this, consider that there is a constant relationship between suite floor area and the suite wall area (next slide).

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Weather Sensitivity and Fourier's Law (2 of 2)

Corner suite: Area of suite = W x L W = Area of suite / L Area of exterior walls = H x (L + W) = H x (L + (Area of suite / L))

Non-corner suite: Area of suite = W x L W = Area of suite / L or L = Area of suite / W Area of exterior walls = H x W or H x L Area of exterior walls = H x (Area of suite / L) or H x (Area of suite /W)

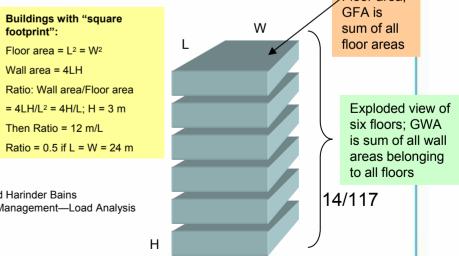
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Transforming U-factor from wall area basis to floor area basis

Why do we need to make this transformation?

Reasoning:

• Overall building U-factors are, by definition (Fourier's Law), in terms of gross wall area (GWA)


• Space heat consumption [kWh/m²] of the building under study was calculated in terms of gross floor area (GFA) by RDH Building Engineering Ltd.

• The chart of Space Heat Consumption against HDD yielded slopes for the gas and electric energy sources

• These slopes represent the weather sensitivity of each heating system in the building (floor area basis)

• Another way of interpreting a slope value is as an energy intensity [kWh/m²] response to changes in HDD

• The transformation process applied the multiplier, Ratio = GWA/GFA, to reduce the coefficient of thermal conductivity, U. When U is based on wall area, there is a certain energy intensity [kWh/m²]. When the same amount of energy is spread out over the floor area, the energy intensity is halved (approximately). This effect is modeled by applying the GWA/GFA ratio. Energy intensity based on floor area is compatible with the energy intensity values extracted from the RDH data set (which divided energy by floor area).

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Special Case Studies for Buildings with Gas Heating Data

• Finding a mean overall building steady-state thermal transmittance (U-factor)

- Special Case Study—Coquitlam
- Special Case Study—Surrey

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Special Case Studies for Buildings with Gas Heating Data

Finding a mean overall building steady-state thermal transmittance (U-factor)

If a building has not been thermally modeled, we need to find a mean U-factor to use in estimating the building's relative proportions of gas and electric heating and gas heating system efficiency. Fortunately, reasonable estimates are possible based on thermal modeling results from nine buildings in BC by RDH Building Engineering Ltd.

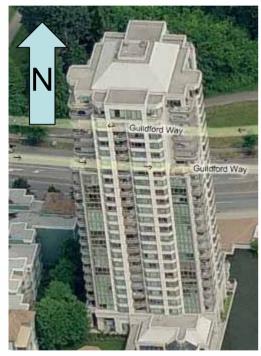
Building ID (RDH Building	Pre-rehabilitation overall building	Post-rehabilitation overal	
Engineering Ltd., Vancouver, BC)	enclosure U-factor [W/(m ² · K)]	enclosure U-factor [W/(m	1 ² · K)]
7 (built year unknown, Victoria)	1.7	1.4	RDH
17 (1990, Vancouver)	2.1	1.6	provided
18 (built 1995, Vancouver)	2.1	1.7	- rare
19 (built 1984, Vancouver)	2.0	1.3	- information
32 (built 1985, Burnaby)	2.5	1.6	from thermal
33 (built 1988, Burnaby)	2.6	1.6	modeling of
39 (built 2002–2003, Burnaby)	2.8		entire
41 (built 2001, Burnaby)	2.8		buildings in
62 (built 1995, West Vancouver)	2.7	2.2	BC.
Mean U-factor	2.4	1.6	
Grand mean U-factor = (2.4 + 1.6)/2 =	2	2.0	

U-factors from thermally modeled buildings were kindly provided by Graham Finch, RDH Building Engineering Ltd., Vancouver, BC.

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Special Case Studies for Buildings with Gas Heating Data

Thermal transmittance (U-factor) was unrelated to the building form ratio (GFA/GWA)


Building Enclosure U-factor	S									
Building ID (RDH Building Engineering Ltd., Vancouver, BC)	Gross Floor Area (GFA, m ²)	Gross Wall Area (GWA, m²)	GFA/GWA	Pre-rehabilitation overall building enclosure R- value [ft2 F hr/Btu]	Pre-rehabilitation overall building enclosure U-factor [W/(m² · K)]	Post-rehabilitation overall building enclosure R-value [ft2 F hr/Btu]	Post-rehabilitation overall building enclosure U-factor [W/(m² · K)]			
7 (built year unknown, Victoria)	8,967	4,581	1.96	3.3	1.7	4.1	1.4			
17 (1990, Vancouver)	6,408	3,898	1.64	2.7	2.1	3.6	1.6			
18 (built 1995, Vancouver)	13,538	6,079	2.23	2.7	2.1	3.3	1.7			
19 (built 1984, Vancouver)	12,063	5,160	2.34	2.9	2.0	4.3	1.3			
32 (built 1985, Burnaby)	14,444	6,775	2.13	2.3	2.5	3.6	1.6			
33 (built 1988, Burnaby)	16,852	7,943	2.12	2.2	2.6	3.5	1.6			
39 (built 2002–2003, Burnaby)	16,218	8,109	2.00	2.0	2.8					
41 (built 2001, Burnaby)	15,753	7,877	2.00	2.0	2.8					
62 (built 1995, West Vancouver)	7,302	4,013	1.82	2.1	2.7	2.6	2.2			
Mean U-factor			2.0		2.4		1.6			
Grand mean U-factor = (2.4 + 1.6)/2 =						2.0	-			
Conversion of R from IP to SI (multiply by this value):	0.176118352									
GFA/GWA against pre-reha	b U-factor y = -0.2788 R ² = 0 not sign	.0205	3.0	GFA/GWA a	against post-rehab	U y = -0.4612x + 2. R ² = 0.1566 not signif at 5 ⁶				
3.0 2.5 2.0 1.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.5										
	.50 2.00	2.50	0.00	0.50	1.00 1.50 GFA/GWA	2.00	2.50			

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

BC hydro

FOR GENERATIONS

Case Study: HB Building ID # 481474, Coquitlam

Source: http://www.bing.com/maps

BC hydro @

FOR GENERATIONS

Building specifications

- RDH Building 24
- Coquitlam
- 137 (144; RDH) Suites, 22 levels (23; RDH)
- Built 1993 (1995; RDH)
- Rehabilitation Feb 2005 to Feb 2006 (RDH)
- Gross Floor Area (GFA) = 13,103 m²
- Floor Area = 596 m²
- Gross Wall Area (GWA) = 6,665 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

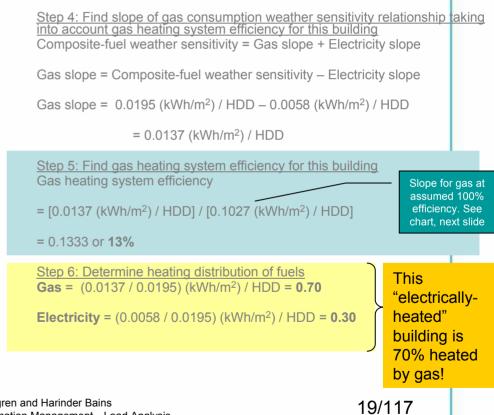
Electric Heat

Method "A" for analyzing weather sensitivity of a building for which we have both electricity and gas energy consumption data

Step 1: Estimate overall building enclosure U-factor This was done as shown on a previous slide. The mean postrehab U-factor models a mix of building stock which was rehabilitated to address moisture damage.

 $U = 1.6 W / (m^2 \cdot K)$

Step 2: Transform U-factor to floor area basis U (floor area basis) = U (wall area basis) x GWA / GFA $= [1.6 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (6.665 \text{ m}^2 / 13.103 \text{ m}^2)$


 $= 0.814 \text{ W} / (\text{m}^2 \cdot \text{K})$

Step 3: Transform units of U-factor to be (kWh/m²) / HDD Note that heating degree-days, $HDD = (K \cdot day)$

 $U = [0.814 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (24 \text{ h/day})/(1000 \text{ W} / \text{kW})$

= 0.0195 (kWh/m²) / HDD

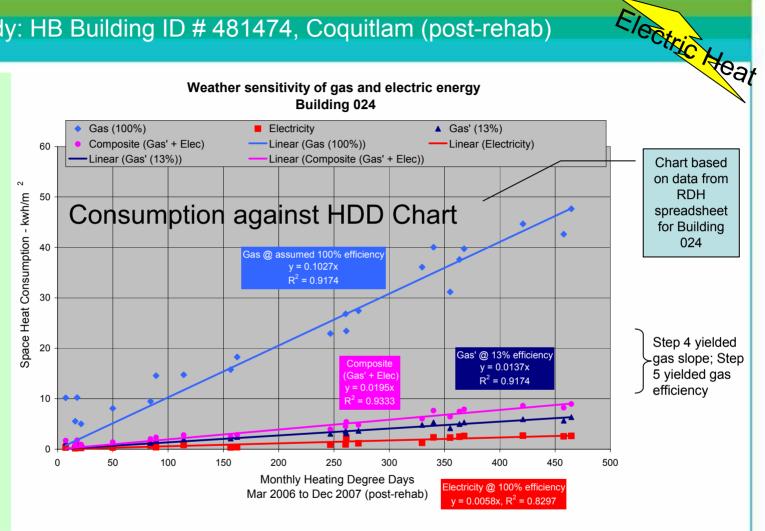
This result is the composite-fuel weather sensitivity.

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

lectric Heat

This chart (adapted from an RDH analysis) shows space heat consumption in response to HDD by type of energy:

· Electricity—baseboard heaters convert approximately 100% of electrical energy to heat.


· Gas-although furnace efficiency can be fairly high, at 85% according to ASHRAE, once ducting and interactions with the building are accounted for, system efficiency is lower, at 13% for this building.

 Composite fuel relationship (Gas @ 13% efficiency and Electricity) reveals the true weather sensitivity of the building.

· Composite slope is, by vector calculation rules. the sum of the electricity and gas (13%) slopes.

BC hydro 🖽

FOR GENERATIONS

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

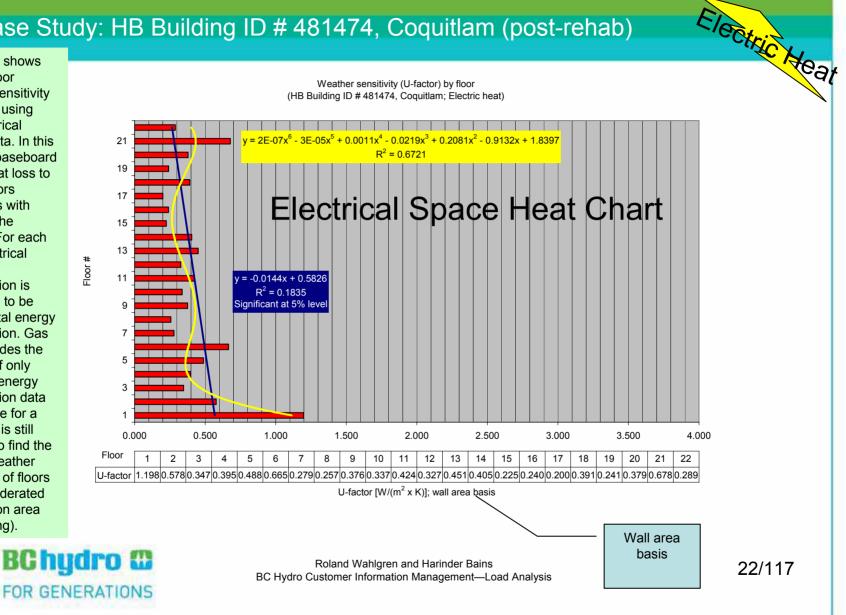
Data table for the five charts that

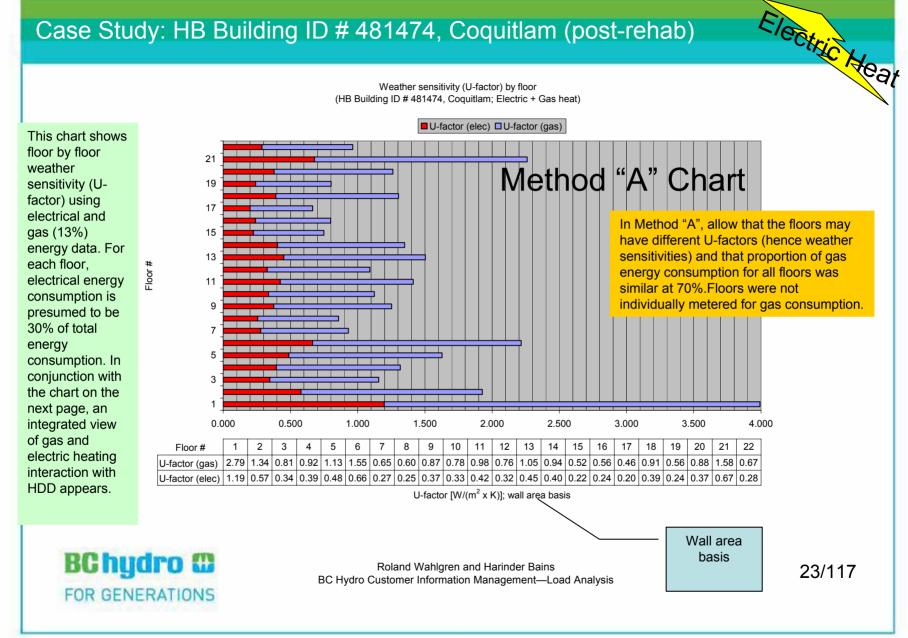
follow

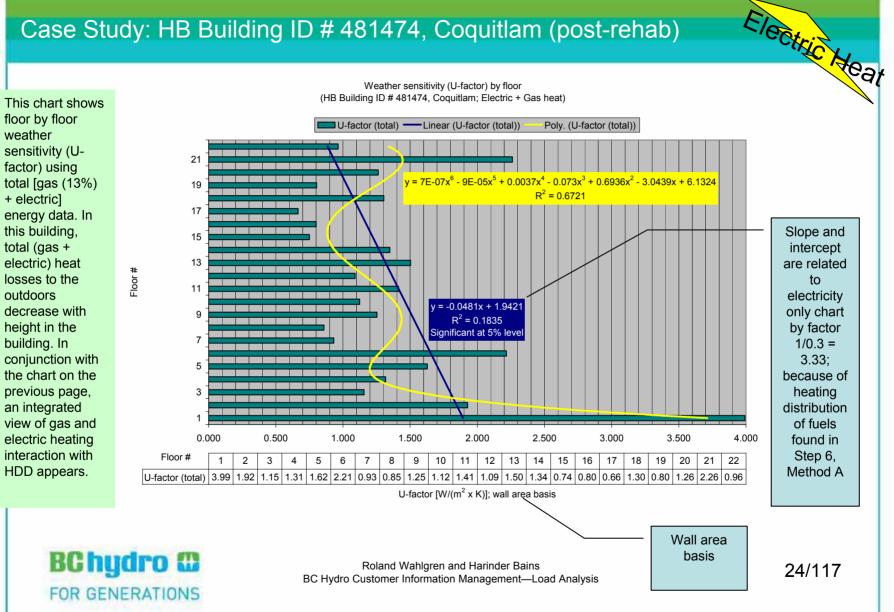
Case Study: HB Building ID # 481474, Coquitlam (post-rehab)

ng 024,	Coquitlam		GFA (m ²) =	40,400												
				13.103	GWA (m ²)	6.665										
			Floor Area =	595	m ²	Ratio: GFA	/GWA =	1.97		multiplier fo	or U(total) =	3.33	_/			
							-	-	Method "A"					Meth	iod "B"	
													Assume	alternate		
													constant	result for		
											diff =		U per	diff =		
						Elec. U,	Elec. U,			U(total),	U(gas),		floor,	U(gas),		
				Qty of		W/(m ² x	W/(m² x	RSI, (m ²	R, hr x ft ²	W/(m ² x	W/(m ² x		W/(m ² x	W/(m ² x	Gas	Elec
oor V	NS Suites	R ²	Floor	suites	WS Floor	K); fab			x F/Btu	K), wab	K), wab		K), wab	K), wab	proportion	proportion
1	1.74	0.76	1	5	8.70					3.992	2.795		1.6		0.2514141	
2	0.70	0.51	2	6	4.20	0.294	0.578			1.927	1.349		1.6		0.6386137	
3	0.36	0.32	3	7	2.52	0.176	0.347	3		1.156	0.810		1.6	1.253	0.7831682	0.2168318
4	0.41	0.67	4	7	2.87	0.201	0.395	3		1.317	0.922		1.6	1.205	0.7530527	0.2469473
5	0.51	0.39	5	7	3.55	0.248	0.488	2		1.628	1.139		1.6	1.112	0.6948163	0.3051837
6	0.69	0.68	6	7	4.83	0.338	0.665	2		2.217	1.552		1.6	0.935	0.5844058	0.4155942
7	0.29	0.22	7	7	2.03	0.142	0.279			0.932	0.652		1.6	1.321	0.82533	0.17467
8	0.27	0.42	8	7	1.87	0.131	0.257	4		0.858	0.601		1.6	1.343	0.8391362	0.1608638
9	0.39	0.52	9	7	2.73	0.191	0.376			1.253	0.877		1.6	1.224	0.7650989	0.2349011
10	0.35	0.38	10	7	2.45	0.172	0.337	3		1.124	0.787		1.6	1.263	0.7891913	0.2108087
11	0.44	0.46	11	7	3.08	0.216	0.424	2		1.413	0.989		1.6	1.176	0.7349834	0.2650166
12	0.40	0.52	12	6	2.38	0.166	0.327	3		1.090	0.763		1.6	1.273	0.7955795	0.2044205
13	0.47	0.37	13	7	3.28	0.229	0.451	2		1.503	1.052		1.6	1.149	0.7181395	0.2818605
14	0.42	0.61	14 15	7	2.94	0.206	0.405	2		1.349	0.944		1.6		0.7470296	0.2529704
15 16	0.25 0.25	0.22	15	7	1.63 1.74	0.114	0.225	4		0.749	0.524		1.6 1.6	1.375	0.8595261	0.1404739
10	0.25	0.26	10	5	1.74	0.122	0.240			0.600	0.560		1.6	1.300	0.8500742	0.1499256
18	0.29	0.24	17	5	2.84	0.102	0.200	3		1.304	0.400		1.6	1.400	0.875255167	0.1247043
19	0.37	0.05	18	5	2.84		0.391	4		0.803	0.913		1.6	1.209	0.7555107	0.2444833
20	0.55	0.21	20	5	2.75		0.241			1.262	0.502		1.6	1.339	0.8494224	0.1303770
20	1.01	0.43	20	5	4.93		0.379		-	2.261	1.583		1.6	0.922	0.5760099	0.230022
22	0.42	0.50	21	5	2.10		0.289	3	-	0.964	0.675		1.6	1.311	0.8193068	0.1806932
	0.42	0.00		Building M	-	0.212	0.200		20	1.389	0.973		1.600	1.183	0.739	0.261
						fab = floor	area basis									
						wab = wall	area basis									

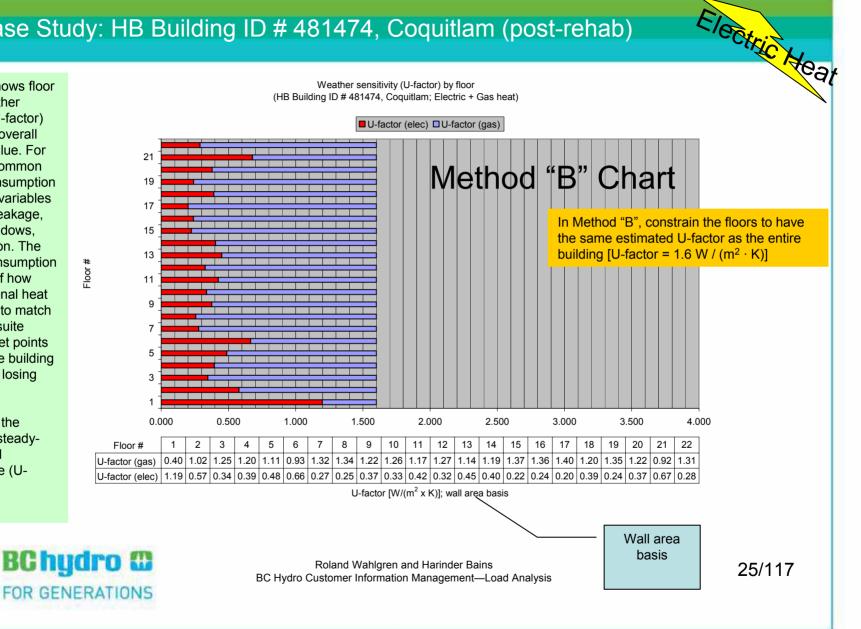
WS = Weather Sensitivity; GFA = Gross Floor Area; GWA = Gross Wall Area; U = Steady-state thermal transmittance; R = R-value = 1/U; RSI = R-value in SI units; U(total) is U or WS related to total heat supplied to floor (storey); U(gas) is WS of gas heating

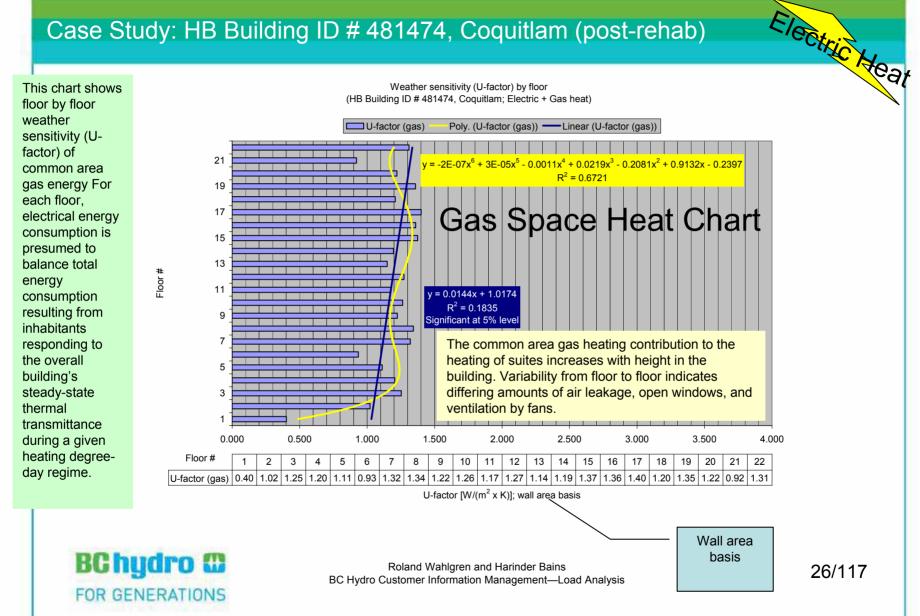



Building


Flo

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis


This chart shows floor by floor weather sensitivity (U-factor) using only electrical energy data. In this building, baseboard heater heat loss to the outdoors decreases with height in the building. For each floor. electrical energy consumption is presumed to be 30% of total energy consumption. Gas heat provides the balance. If only electrical energy consumption data is available for a building it is still possible to find the relative weather sensitivity of floors (albeit moderated by common area gas heating).



This chart shows floor by floor weather sensitivity (U-factor) equal to the overall enclosure value. For each floor. common area das consumption depends on variables such as air leakage, operable windows. and ventilation. The electrical consumption is an index of how much additional heat was needed to match aggregated suite thermostat set points given that the building is constantly losing heat to the environment according to the enclosure's steadystate thermal transmittance (Ufactor).

Method "B" for analyzing weather sensitivity of a building for which we have both electricity and gas energy consumption data

Step 1: Estimate overall building enclosure U-factor Step 4: Determine heating distribution of fuels from average proportions of gas and electric U-factors tabulated below Method This was done as shown on a previous slide. The **mean post-**"B" Chart (see also data table in earlier slide) rehab U-factor models a mix of building stock which was rehabilitated to address moisture damage. Gas = 0.74: Electricity = 0.26 $U = 1.6 W / (m^2 \cdot K)$ Step 5: Find slope of gas consumption weather sensitivity relationship = 0.74 x composite fuel weather sensitivity Gas slope Step 2: Transform U-factor to floor area basis = 0.74 x 0.0195 (kWh/m²) / HDD U (floor area basis) = U (wall area basis) x GWA / GFA $= 0.0144 (kWh/m^2) / HDD$ $= [1.6 \text{ W} / (\text{m}^2 \cdot \text{K})] \text{ x} (6.665 \text{ m}^2 / 13.103 \text{ m}^2)$ Step 6: Find gas heating system efficiency for this building $= 0.814 \text{ W} / (\text{m}^2 \cdot \text{K})$ Slope for gas at Gas heating system efficiency assumed 100% efficiency. See Step 3: Transform units of U-factor to be (kWh/m²) / HDD Consumption = [0.0144 (kWh/m²) / HDD] / [0.1027 (kWh/m²) / HDD] Note that heating degree-days, HDD = $(K \cdot day)$ against HDD Chart = 0.14 or **14%** $U = [0.814 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (24 \text{ h/dav})/(1000 \text{ W} / \text{kW})$ = 0.0195 (kWh/m²) / HDD This result is the composite-fuel weather sensitivity. Method "B" Steps 4 and 6 yield results similar to Method "A" Steps 6 and 5 respectively. BChydro 🖽 Roland Wahlgren and Harinder Bains 27/117BC Hydro Customer Information Management—Load Analysis FOR GENERATIONS

Case Study: HB Building ID # 25437, Surrey

Source: http://www.bing.com/maps

Building specifications

- RDH Building 11
- Surrey
- 126 (128; RDH) Suites, 16 levels
- Built 1993 (1995; RDH)
- Rehabilitation Jan 2001 to Aug 2002 (RDH)
- Gross Floor Area (GFA) = 10,118 m² (RDH)
- Floor Area = 632 m^2
- Gross Wall Area (GWA) = 4,134 m²

Gas data available

lectric Heat

28/117

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Method "A" for analyzing weather sensitivity of a building for which we have both electricity and gas energy consumption data

Step 1: Estimate overall building enclosure U-factor Step 4: Find slope of gas consumption weather sensitivity relationship taking into account gas heating system efficiency for this building This was done as shown on a previous slide. The **mean post**rehab U-factor models a mix of building stock which was Composite-fuel weather sensitivity = Gas slope + Electricity slope rehabilitated to address moisture damage. Gas slope = Composite-fuel weather sensitivity – Electricity slope $U = 1.6 W / (m^2 \cdot K)$ Gas slope = $0.0157 (kWh/m^2) / HDD - 0.0082 (kWh/m^2) / HDD$ Step 2: Transform U-factor to floor area basis U (floor area basis) = U (wall area basis) x GWA / GFA = 0.0075 (kWh/m²) / HDD $= [1.6 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (4.134 \text{ m}^2 / 10.118 \text{ m}^2)$ Step 5: Find gas heating system efficiency for this building $= 0.654 \text{ W} / (\text{m}^2 \cdot \text{K})$ Gas heating system efficiency Step 3: Transform units of U-factor to be (kWh/m²) / HDD = [0.0075 (kWh/m²) / HDD] / [0.0079 (kWh/m²) / HDD] Note that heating degree-days, HDD = $(K \cdot day)$ = 0.95 or **95%** $U = [0.654 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (24 \text{ h/dav})/(1000 \text{ W} / \text{kW})$ Step 6: Determine heating distribution of fuels = 0.0157 (kWh/m²) / HDD Gas = (0.0075 / 0.0157) (kWh/m²) / HDD = 0.48 This result is the composite-fuel weather sensitivity. Electricity = (0.0082 / 0.0157) (kWh/m²) / HDD = 0.52

Slope for gas at assumed 100% efficiency. See chart

"electrically-

48% heated by gas!

This

heated" building is

BC hydro FOR GENERATIONS


Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 29/117

lectric Heat

This chart (adapted from an RDH analysis) shows space heat consumption in response to HDD by type of energy:

· Electricity—baseboard heaters convert approximately 100% of electrical energy to heat.

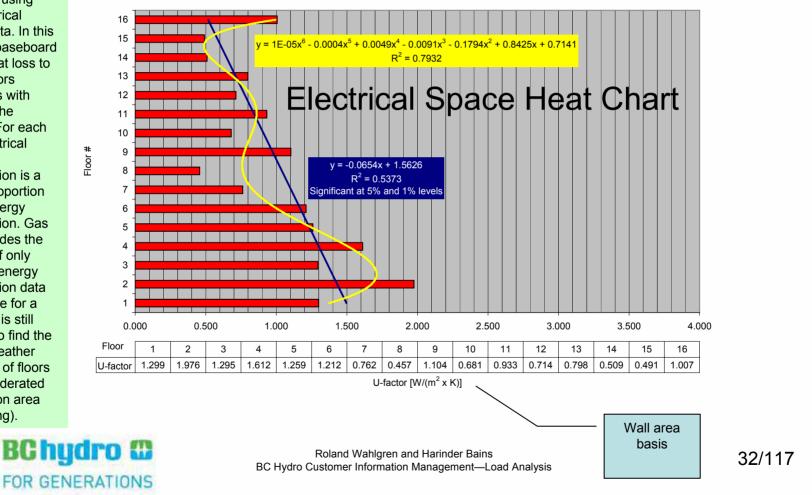
· Gas-although furnace efficiency can be fairly high, at 85% according to ASHRAE, once ducting and interactions with the building are accounted for, system efficiency must be lower for this building.

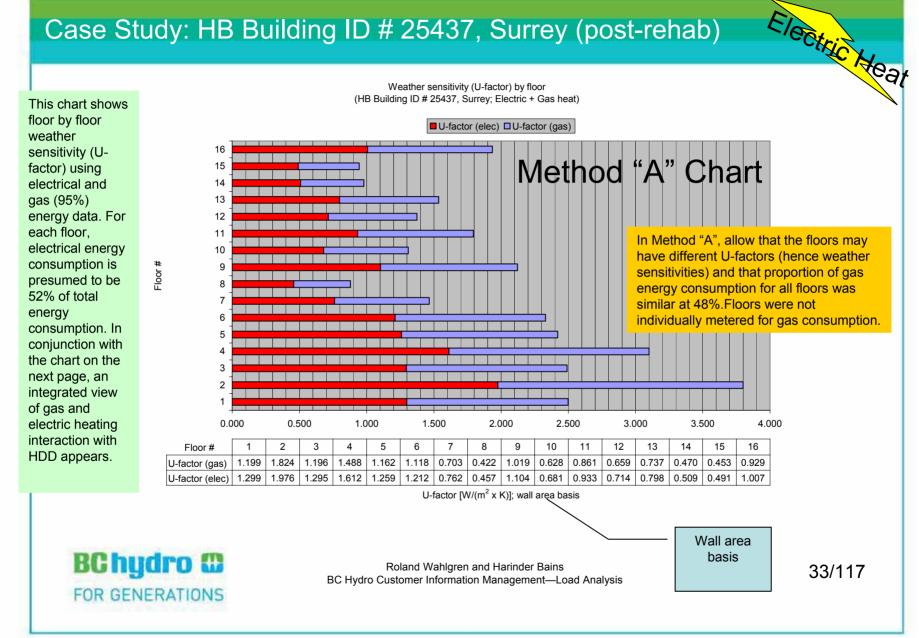
BC hydro FOR GENERATIONS

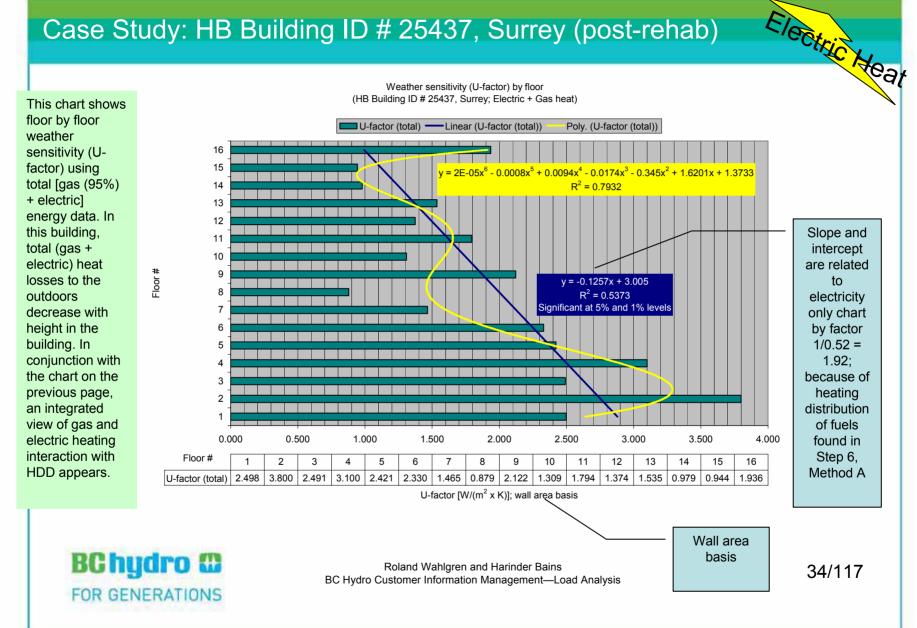
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

Data table for the five charts that follow

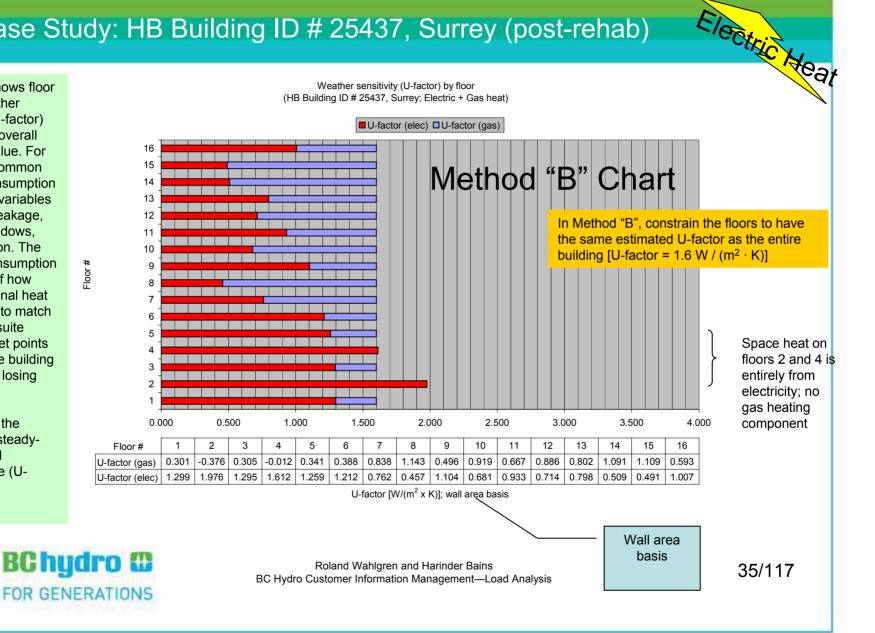
uilding 01	1, Surrey		GFA (m ²)=	10,118	GFA (m²)=	4,134							/				
			Floor Area =	621	m²	Ratio: GFA	/GWA =	2.45		multiplier fo	or U(total) =	1.92					
									Method "A"		. /			Met			
				Qty of		Elec. U, W/(m² x	Elec. U, W/(m² x	RSI, (m²	R, hr x ft ²	U(total), W/(m² x	diff = U(gas), W/(m ² x			alternate result for diff = U(gas), W/(m ² x	Gas	Elec	
Floor		R ²		suites	WS Floor	K), fab	K), wab		x F/Btu	K), wab	K), wab		K), wab	K), wab	proportion		
1	1.13	0.73		7	7.91	0.531	1.299		-	2.498	1.199		1.6		0.18814614		
2	1.10	0.75		11	12.03	0.807	1.976	1	3	3.800	1.824		1.6	-0.376	-0.2350579	1.23505792	
3	0.72	0.69	-	11	7.89	0.0-0	1.295		4	2.491	1.196		1.6		0.19047878		
4	0.95	0.74	-	10	9.82	0.659	1.612	1		3.100	1.488		1.6	-0.012	-0.0075473	1.00754725	
5	1.01	0.67	5	8	7.67	0.514	1.259	1	-	2.421	1.162		1.6	0.341	0.21310544	0.78689456	
6	0.94	0.71	6	8	7.38	0.495	1.212	1	5	2.330	1.118		1.6	0.388	0.24279224	0.75720776	
7	0.58	0.55	7	8	4.64	0.311	0.762	1	7	1.465	0.703		1.6	0.838	0.52376714	0.47623286	
8	0.35	0.29	-	8	2.78	0.187	0.457	2	12	0.879	0.422		1.6	1.143	0.71425095	0.28574905	
9	0.84	0.77	9	8	6.72	0.451	1.104	1	5	2.122	1.019		1.6	0.496	0.31028344	0.68971656	
10	0.52	0.55	10	8	4.14	0.278	0.681	1	8	1.309	0.628		1.6	0.919	0.57464991	0.42535009	
11	0.71	0.64	11	8	5.68	0.381	0.933	1	6	1.794	0.861		1.6	0.667	0.41702529	0.58297471	
12	0.55	0.63	12	8	4.35	0.292	0.714	1	8	1.374	0.659		1.6	0.886	0.55353169	0.44646831	
13	0.61	0.65	13	8	4.86	0.326	0.798	1	7	1.535	0.737		1.6	0.802	0.50103162	0.49896838	
14	0.54	0.58	14	6	3.10	0.208	0.509	2	11	0.979	0.470		1.6	1.091	0.68173388	0.31826612	
15	0.51	0.59	15	6	2.99	0.201	0.491	2	12	0.944	0.453		1.6	1.109	0.69307053	0.30692947	
16	1.55	0.60	16	4	6.13	0.411	1.007	1	6	1.936	0.929		1.6	0.593	0.37088557	0.62911443	
				Building Me	eans	0.411	1.007			1.936	0.929		1.600	0.593	0.371	0.629	
						fab = floor	area basis										
						wab = wall											

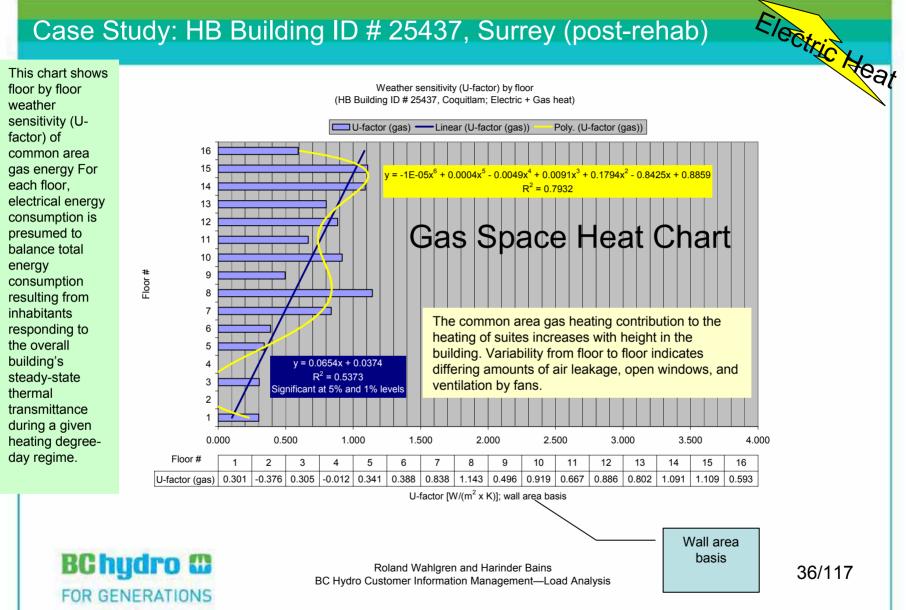

WS = Weather Sensitivity; GFA = Gross Floor Area; GWA = Gross Wall Area; U = Steady-state thermal transmittance; R = R-value = 1/U; RSI = R-value in SI units; U(total) is U or WS related to total heat supplied to floor (storey); U(gas) is WS of gas heating




Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

This chart shows floor by floor weather sensitivity (U-factor) using only electrical energy data. In this building, baseboard heater heat loss to the outdoors decreases with height in the building. For each floor, electrical energy consumption is a certain proportion of total energy consumption. Gas heat provides the balance. If only electrical energy consumption data is available for a building it is still possible to find the relative weather sensitivity of floors (albeit moderated by common area gas heating).

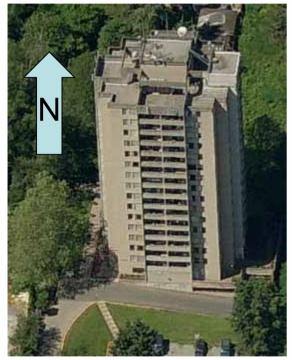

Weather sensitivity (U-factor) by floor (HB Building ID # 25437, Surrey; Electric heat) Electric Heat



This chart shows floor by floor weather sensitivity (U-factor) equal to the overall enclosure value. For each floor. common area das consumption depends on variables such as air leakage, operable windows. and ventilation. The electrical consumption is an index of how much additional heat was needed to match aggregated suite thermostat set points given that the building is constantly losing heat to the environment according to the enclosure's steadystate thermal transmittance (Ufactor).

lectric Heat Method "B" for analyzing weather sensitivity of a building for which we have both electricity and gas energy consumption data

Step 1: Estimate overall building enclosure U-factor Step 4: Determine heating distribution of fuels from average proportions of gas and electric U-factors tabulated below Method This was done as shown on a previous slide. The **mean post-**"B" Chart (see also data table in earlier slide) rehab U-factor models a mix of building stock which was rehabilitated to address moisture damage. Gas = 0.37: Electricity = 0.63 $U = 1.6 W / (m^2 \cdot K)$ Step 5: Find slope of gas consumption weather sensitivity relationship = 0.37 x composite fuel weather sensitivity Gas slope Step 2: Transform U-factor to floor area basis = 0.37 x 0.0157 (kWh/m²) / HDD U (floor area basis) = U (wall area basis) x GWA / GFA = 0.0058 (kWh/m²) / HDD $= [1.6 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (4.134 \text{ m}^2 / 10.118 \text{ m}^2)$ Step 6: Find gas heating system efficiency for this building $= 0.654 \text{ W} / (\text{m}^2 \cdot \text{K})$ Slope for gas at Gas heating system efficiency assumed 100% efficiency. See Step 3: Transform units of U-factor to be (kWh/m²) / HDD Consumption = [0.0058 (kWh/m²) / HDD] / [0.0079 (kWh/m²) / HDD] Note that heating degree-days, HDD = $(K \cdot day)$ against HDD Chart = 0.73 or **73%** $U = [0.654 \text{ W} / (\text{m}^2 \cdot \text{K})] \times (24 \text{ h/dav})/(1000 \text{ W} / \text{kW})$ = 0.0157 (kWh/m²) / HDD This result is the composite-fuel weather sensitivity. Method "B" Steps 4 and 6 yield results similar to Method "A" Steps 6 and 5 respectively. BChydro 🖽 Roland Wahlgren and Harinder Bains 37/117 BC Hydro Customer Information Management—Load Analysis FOR GENERATIONS


Method for inferring gas data

With the experience of dealing with the Coquitlam and Surrey buildings with gas data it became clear it was possible to estimate gas use in buildings for which gas data was not available. The estimation method relied on making an assumption about the building enclosure's overall U-factor. We used this method only if at least one of the building floors has an electric heater weather sensitivity or U-factor (wall area basis) with an order of magnitude $10^0 \approx 1$. Otherwise, we believed we were risking overstating the contribution of common-area gas to suite heating. Further research is needed to understand better the range of common-area gas contribution to space-heating of suites.

The estimation method is illustrated using electrical consumption data from HB Building ID # 137210, Surrey (next slides).

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 38/117

Source: http://www.bing.com/maps

Building specifications

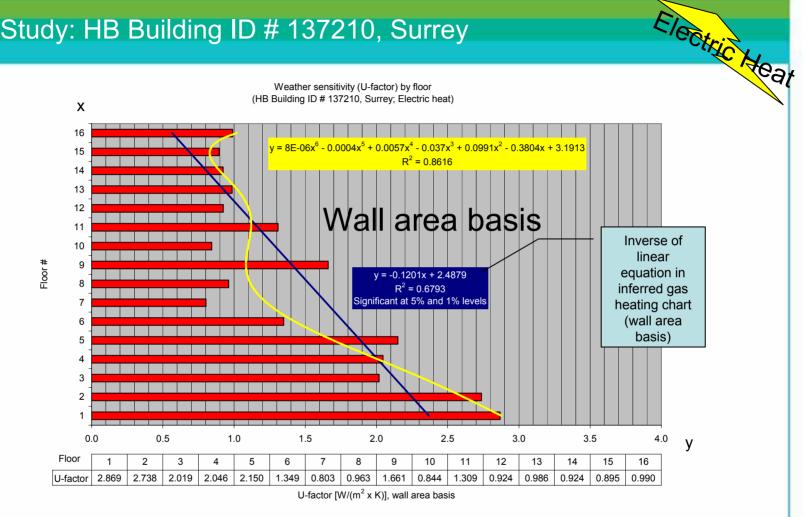
- Surrey
- 92 Suites, 16 levels
- Built 1983
- Estimated length from aerial view = 27.5 m
- Estimated width from aerial view = 23m
- Estimated floor area = 633 m^2

BC hydro

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

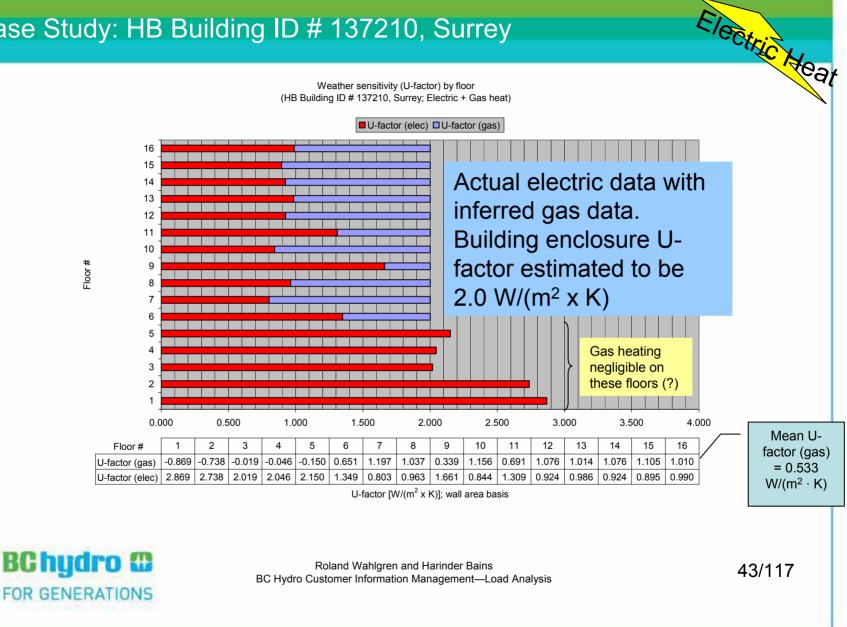
39/117

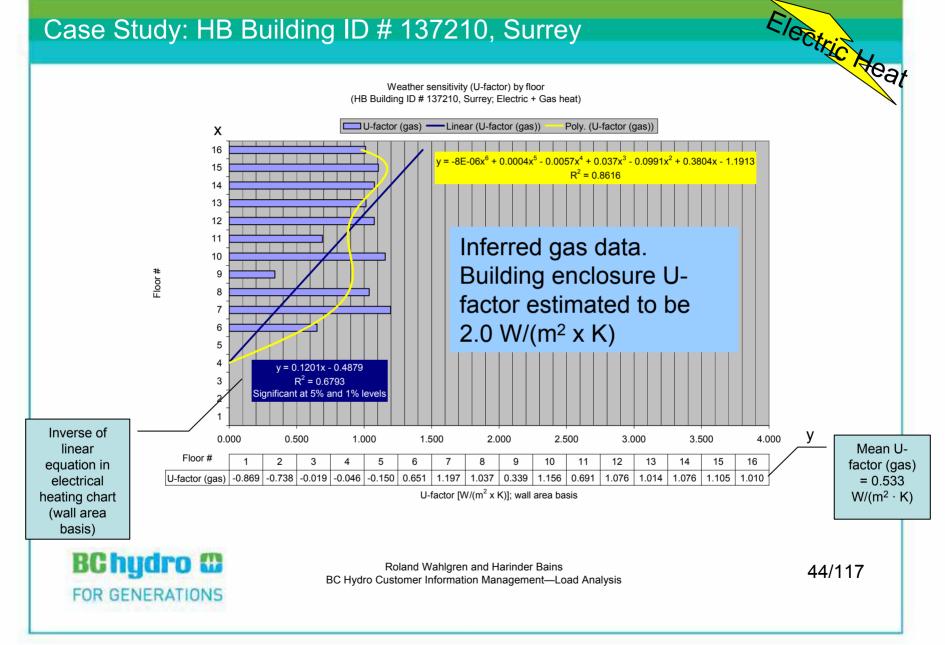
Data table for the four charts that follow

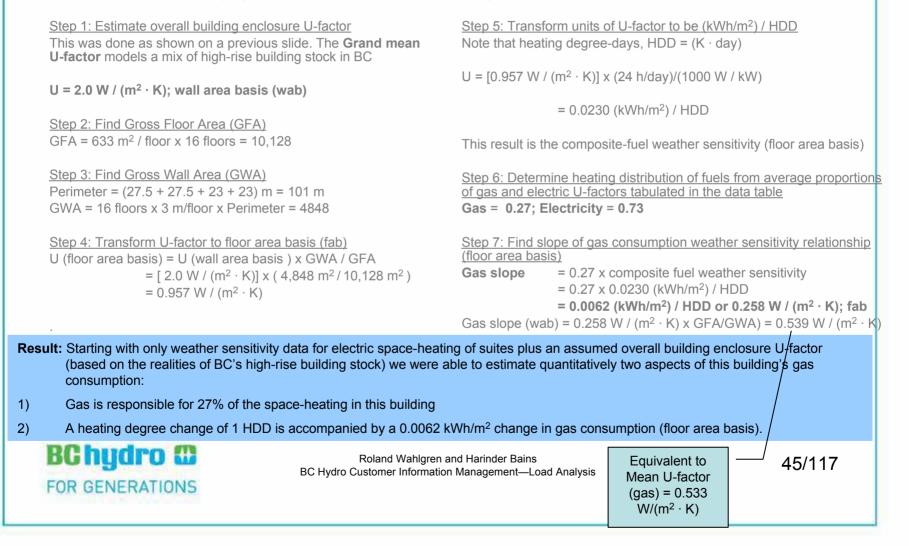

Building	g ID # 137210,	Surrey	GFA (m ²)=		GFA (m ²)=	4,848										
			Floor Area =	633	m²	Ratio: GFA	/GWA =	2.09		multiplier fo	or U(total) =	not available				
									Method "A" Method "B" Assume alternate							
		_ 1		Qty of		Elec. U, W/(m ² x	U, Elec. U, R, hr x ft² W/(m² x K), wab R, hr x ft² W/(m² x K), wab X, wab	Gas								
	WS Suites	R ²	Floor		WS Floor							/				
1	2.98	0.86	1	7	20.86	1.373						1				
2 3	1.82 1.34	0.80 0.82	2 3	11 11	19.91 14.68	1.311 0.966	2.738			anal	SIS		2	-0.738		1.36892856
3	1.34	0.82	4	10	14.00	0.966	2.019						2	-0.019		1.00928843
5	2.06	0.85	5	8	14.00		2.040						2	-0.040		1.07517002
6	1.25	0.86	6	8	9.81	0.646	1.349						2			0.67454662
7	0.73	0.66	7	8	5.84		0.803						2			0.40154015
8	0.88	0.00	8	8	7.00		0.963						2			0.48129813
9	1.51	0.86	9	8			1.661	0.6				1	2			0.83058306
10	0.77	0.59	10	8			0.844	1.2				ì	2			0.42193803
11	1.19	0.80	11	8	9.52	0.627	1.309	0.8	4.3			Ì	2	0.691	0.34543454	0.65456546
12	0.85	0.73	12	8	6.72	0.443	0.924	1.1	6.1			Ì	2			0.46223372
13	0.90	0.70	13	8	7.17	0.472	0.986	1.0	5.8			Ì	2	1.014	0.50682568	0.49317432
14	1.17	0.84	14	6			0.924	1.1	6.1				2			0.46195245
15	1.11	0.81	15	6		0.428	0.895	1.1	6.3			\sim	2	1.105	0.5524865	
16	1.82	0.86	16	4		-	0.990	1.0	5.7				2			0.49486199
				Building M	eans	0.702	1.467						2.000	0.533	0.267	0.733
						fab = floor	aroa basia						$ \rightarrow $			
						ab = 100r a wab = wall					Mean	U-factor		\succ		\sim
						wab – wali	area basis									
												= 0.533				
											W/(r	n² · K)				
														rt of the		
DC budme m					Roland Wahlgren and Harinder Bains						spre	adsheet	was use	ed to		
BChydro 🛛			n								0/117					
					BC I	Hydro Cus	tomer Info	ormation N	Manageme	ent-Load	Analysis			in buildin		0/11/
FOR	GENER	ATION	IS						-		-		•		•	
- ANAC														U-factor		
												U(g	as) and	gas/elec	ctric	
												er	erav co	nsumptio	on 🛏	

Electric Heat (HB Building ID # 137210, Surrey; Electric heat) Х 16 15 $y = 4E-06x^{6} - 0.0002x^{5} + 0.0027x^{4} - 0.0177x^{3} + 0.0474x^{2} - 0.1821x + 1.5276$ $R^2 = 0.8616$ 14 13 12 Floor area basis 11 10 Floor # 9 8 y = -0.0575x + 1.1909 $R^2 = 0.6793$ 7 Significant at 5% and 1% levels 6 5 4 3 2 y 3.0 0.0 0.5 1.0 1.5 2.0 2.5 Floor 2 3 5 6 7 8 9 1 4 10 11 12 13 14 15 16 0.384 0.461 U-factor 1.373 1.311 0.966 0.979 1.029 0.646 0.795 0.404 0.627 0.443 0.472 0.442 0.428 0.474 U-factor $[W/(m^2 \times K)]$, floor area basis

Weather sensitivity (U-factor) by floor




Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management-Load Analysis 41/117


BC hydro FOR GENERATIONS

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 42/117

Steps for inferring gas data for HB Building ID # 137210, Surrey

Modeled effect of rehabilitation of a building enclosure

	<u> </u>	0 # 137210,		proportions against building enclosure U-factor	
U(building)	U(gas)	Gas proportion	Electric proportion		
1.3	-0.167	-0.128	1.128		
1.4	-0.067	-0.048	1.048		
1.5	0.033	0.022	0.978	2 1	
1.6	0.133	0.083	0.917		
1.7	0.233	0.137	0.863	1.8 0.9	
1.8	0.333	0.185	0.815		3
1.9	0.433	0.228	0.772		<i>i</i> _
2	0.533	0.267	0.733	0.7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	heating
2.1	0.633	0.301	0.699		eat
2.2	0.733	0.333	0.667		<u>, </u>
2.3	0.833	0.362	0.638	Construction of the second sec	electric
2.4	0.933	0.389	0.611		5 8
2.5	1.033	0.413	0.587		2 0
2.6	1.133	0.436	0.564	0.4	-
2.7	1.233	0.457	0.543	0.2 0.1	
Rehab	ilitation			0 0.5 1 1.5 2 2.5 3	
reduces the building				Building enclosure U-factor, W/(m ² x K), wall area basis	
enclosure					

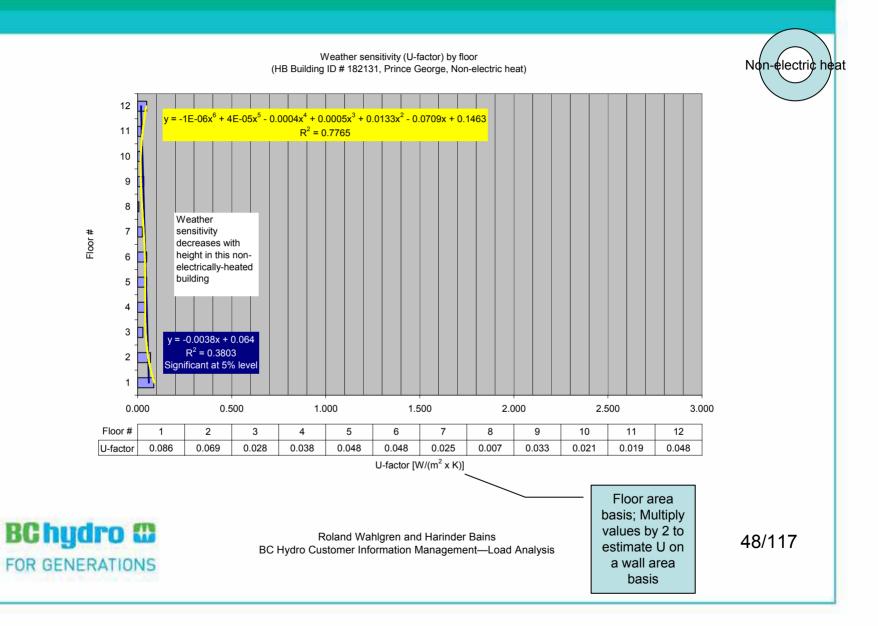
This is a simple model of building enclosure rehabilitation in terms of the steady-state thermal transmittance (U-factor). Reducing the enclosure U-factor, from values above 2 W/(m² x K) to below this value, reduces the weather sensitivity of the gas heating system and lowers the proportion of gas heating in the building. Rehabilitation increases the proportion of electric heating. The same effect would be observed for any building using electric base heaters in suites and gas heating of common areas. This effect is relevant to the goal of reducing greenhouse gas emissions from buildings in BC where most electric energy is supplied from hydro sources.

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 46/117

Case Study: HB Building ID # 182131, Prince George

Source: http://homes.point2.com/CA/British-Columbia/Northern-British-Columbia/Prince-George/Prince-George-City-Central/11092012-Photos.aspx

Building specifications

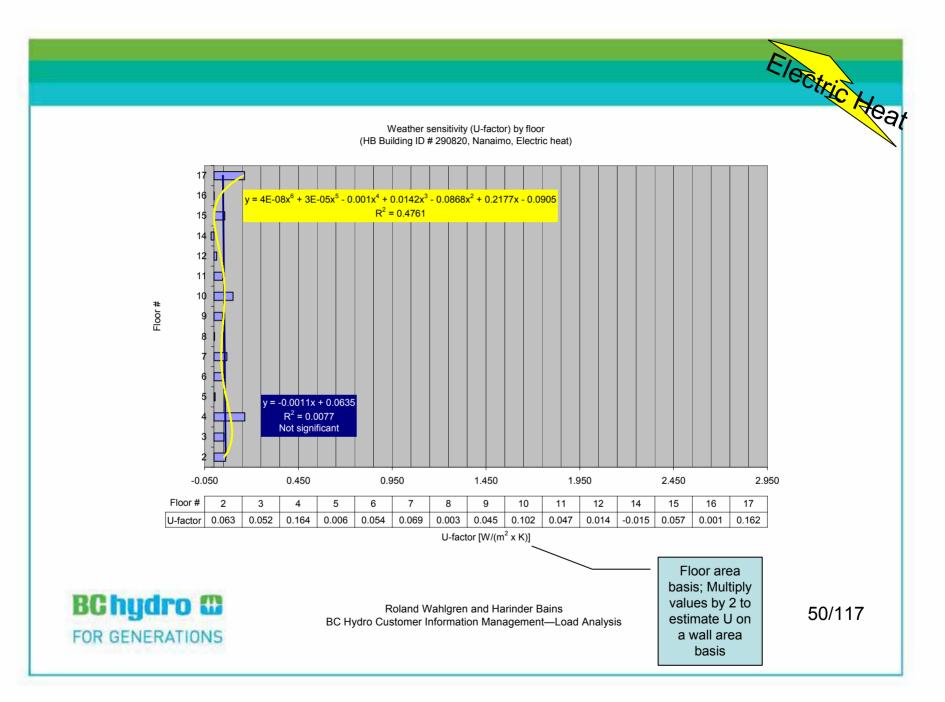

- Prince George
- 84 Suites, 12 levels
- Built 1965, brick
- Estimated length from aerial view = 42 m
- Estimated width from aerial view = 15 m
- Estimated floor area = 630 m²

Aerial view building length and width estimates were done using Bing (http://www.bing.com/maps) or Google (http://www.google.com/maps) aerial views

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 47/117

Case Study: HB Building ID # 290820, Nanaimo

Source: http://maps.nanaimo.ca/data/property/104230.html


Building specifications

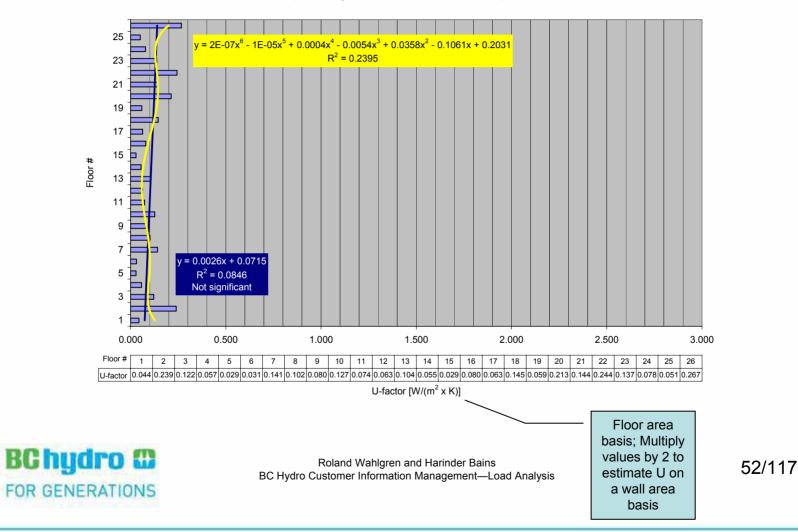
- Nanaimo
- 100 Suites, 17 levels
- Built 1968
- Estimated length from aerial view = 29 m
- Estimated width from aerial view = 14 m
- Estimated floor area = 406 m²

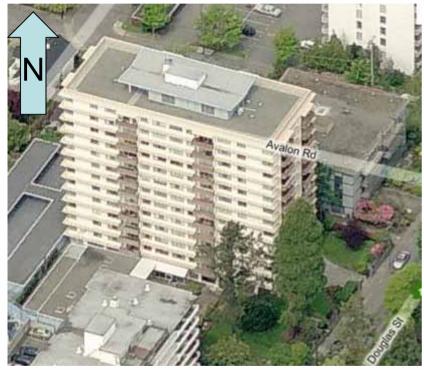
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 49/117

Case Study: HB Building ID # 196478, Nanaimo

Source: http://nanaimocondo.ca/cameron-island/

Building specifications


- Nanaimo
- 118 Suites, 26 levels
- Built 1997
- Estimated diameter from aerial view = 36 m
- Estimated floor area = 1018 m²

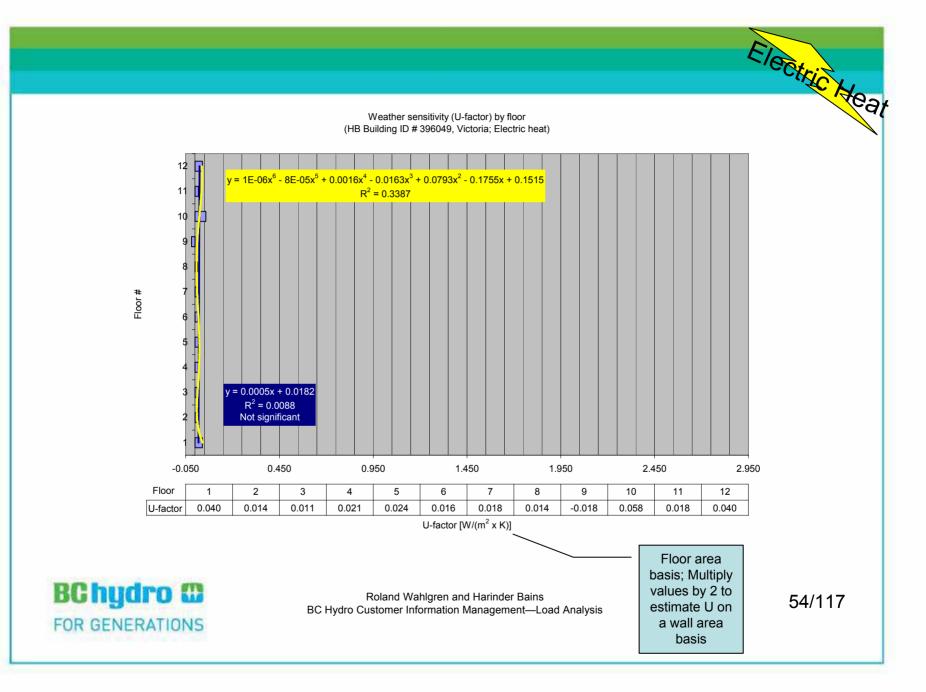


Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 51/117

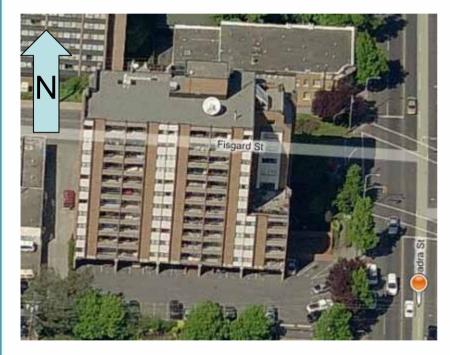
Weather sensitivity (U-factor) by floor (HB Building ID # 196478, Nanaimo; Electric heat)

Case Study: HB Building ID # 396049, Victoria

Source: http://www.bing.com/maps


Building specifications

- Victoria
- 95 Suites, 12 levels
- Built 1970
- Estimated length from aerial view = 46 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 920 m²

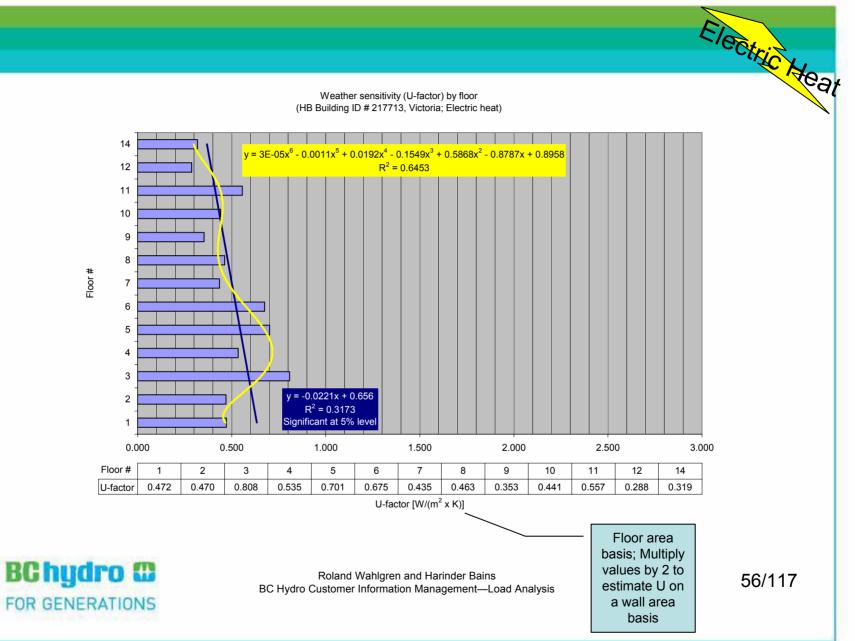


Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 53/117

Case Study: HB Building ID # 217713, Victoria

Source: http://www.bing.com/maps

Building specifications


- Victoria
- 119 Suites, 13 levels
- Built 1982
- · Steel and concrete
- Estimated length from aerial view = 40 m
- Estimated width from aerial view = 17 m
- Estimated floor area = 680 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 55/117

Weather sensitivity (U-factor) by floor (HB Building ID # 217713, Victoria; Electric heat)

Case Study: HB Building ID # 567933, Victoria

Source: http://www.bing.com/maps

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

57/117

Electric Heat

Building specifications

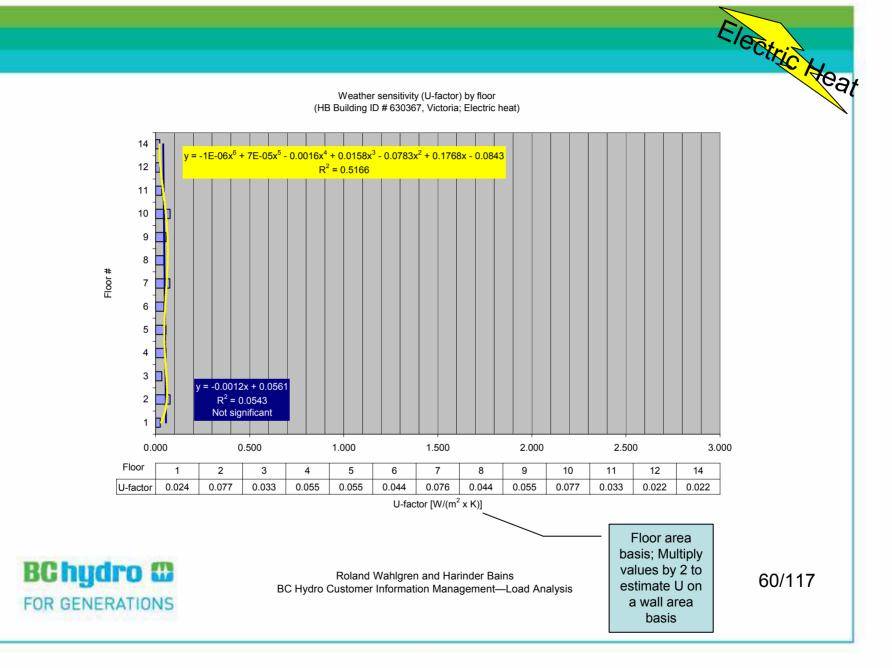
- Victoria
- 82 Suites, 12 levels
- Built 1966
- Estimated length from aerial view = 30 m
- Estimated width from aerial view = 16 m
- Estimated floor area = 480 m²

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 567933, Victoria; Electric heat) 14 $v = 2E-06x^6 - 0.0001x^5 + 0.0018x^4 - 0.0149x^3 + 0.0615x^2 - 0.107x + 0.0921$ 12 $R^2 = 0.3487$ 11 10 9 8 Floor # 7 6 5 4 3 y = -0.0004x + 0.0413 $R^2 = 0.0072$ 2 Not significant 0.000 0.500 1.000 1.500 2.000 2.500 3.000 Floor 2 3 4 5 6 7 8 9 10 11 12 14 0.030 0.043 0.091 0.030 0.024 U-factor 0.030 0.036 0.030 0.036 0.024 0.030 0.055 U-factor [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 58/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 630367, Victoria

Source: http://www.bing.com/maps

Building specifications

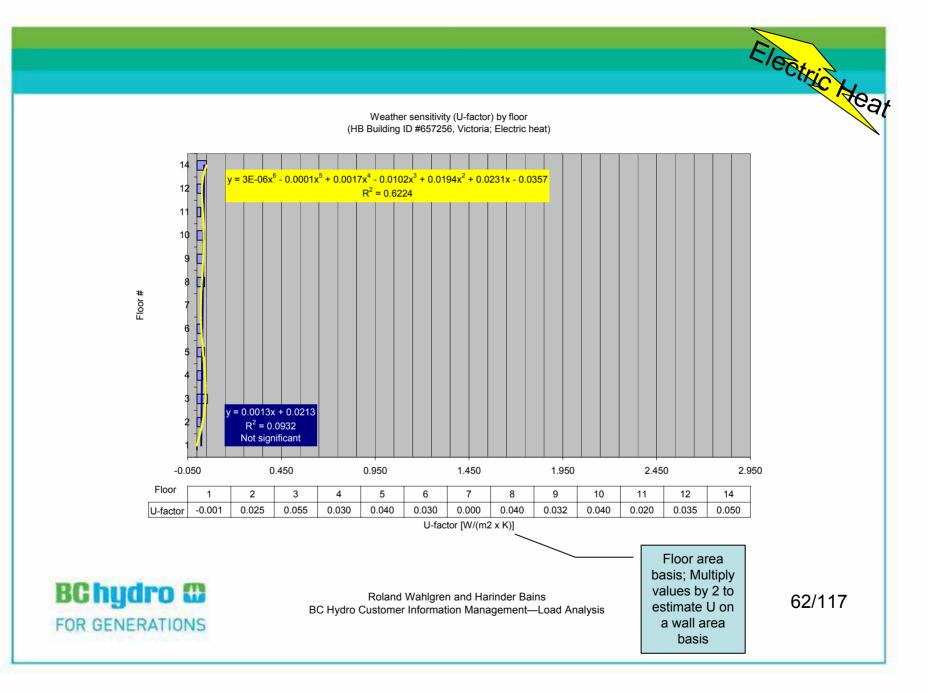

- Victoria
- 121 Suites, 13 levels
- Built 1964
- Estimated length from aerial view = 21 m
- Estimated width from aerial view = 18 m
- Estimated floor area = 378 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

59/117

Case Study: HB Building ID # 657256, Victoria

Source: http://www.bing.com/maps

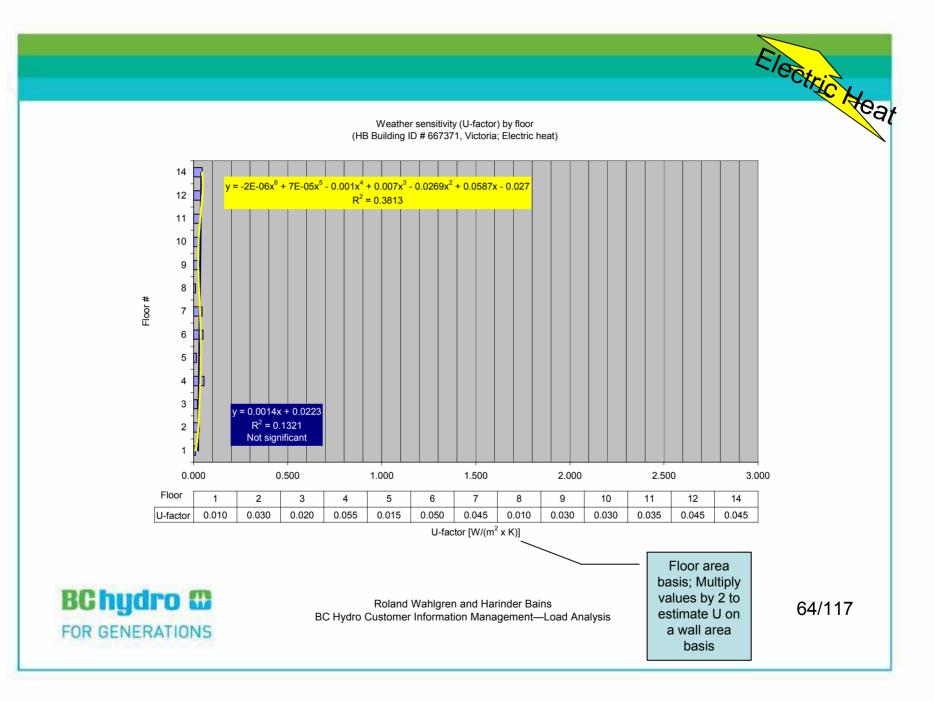

Building specifications

- Victoria
- 144 Suites, 13 levels
- Built 1966
- Estimated length from aerial view = 50 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 1000 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 61/117

Case Study: HB Building ID # 667371, Victoria

Source: http://www.bing.com/maps

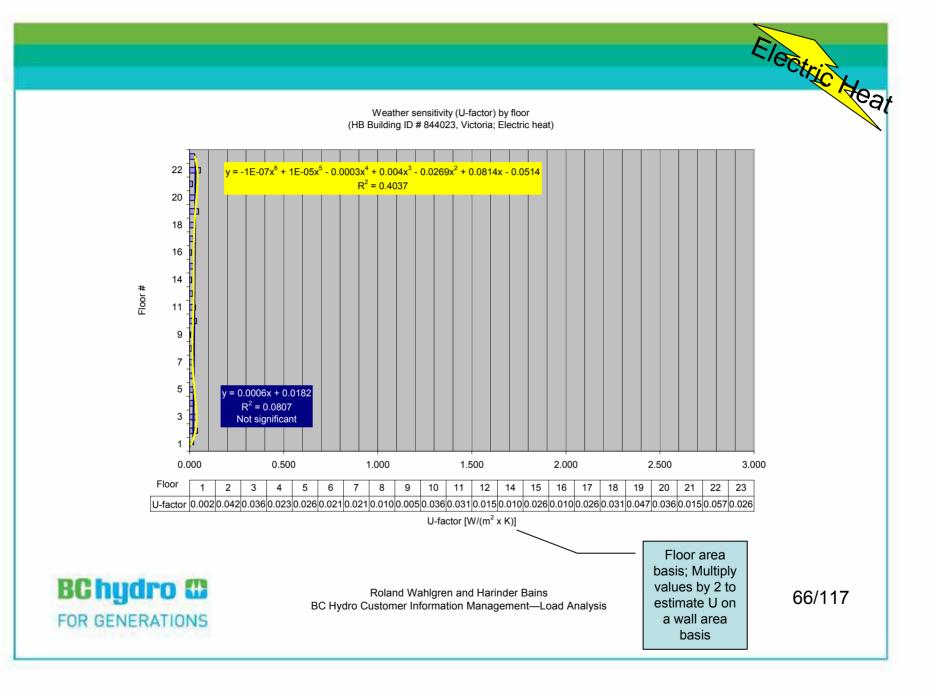

Building specifications

- Victoria
- 148 Suites, 13 levels
- Built 1965
- Estimated length from aerial view = 50 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 1000 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 63/117

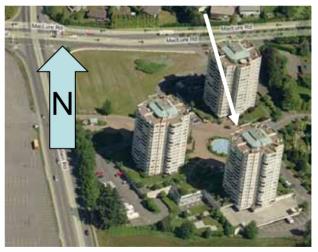
Case Study: HB Building ID # 844023, Victoria

Source: http://www.bing.com/maps


Building specifications

- Victoria
- 207 Suites, 22 levels
- Built 1970
- Estimated length from aerial view = 40 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 800 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 65/117


Case Study: HB Building ID # 493833, Abbotsford

Source: http://www.bing.com/maps

Building specifications

- Abbotsford
- 95 Suites, 16 levels
- Built 1990
- Estimated length from aerial view = 28 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 560 m²

Regency Park (Gladwin Road) tall buildings. Source: http://www.bing.com/maps

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 67/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 493833, Abbotsford; Electric heat) 17 16 $y = 3E-05x^{6} - 0.0013x^{5} + 0.0255x^{4} - 0.2391x^{3} + 1.1285x^{2} - 2.48x + 2.6413$ 15 $R^2 = 0.6794$ 14 12 11 10 y = 0.0082x + 0.6781 Floor # 9 R2 = 0.01648 Not significant 7 6 5 4 3 2 1 0.000 0.500 1.000 1.500 2.000 2.500 3.000 Floor 2 7 8 12 17 1 3 4 5 6 9 10 11 14 15 16 0.946 0.319 0.429 0.951 U-factor 1.097 0.536 0.882 0.589 0.766 0.670 0.576 0.732 0.728 0.375 0.821 1.549 U-factor [W/(m2 x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 68/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 497077, Abbotsford

Source: http://www.bing.com/maps

Building specifications

- Abbotsford
- 92 Suites, 16 levels
- Built 1990
- Estimated length from aerial view = 27 m
- Estimated width from aerial view = 19 m
- Estimated floor area = 513 m²

Regency Park (Gladwin Road) tall buildings. Source: http://www.bing.com/maps

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 69/117

Electric Heat (HB Building ID # 497077, Abbotsford; Electric heat) 17 16 $y = 1E-05x^{6} - 0.0006x^{5} + 0.0106x^{4} - 0.0892x^{3} + 0.377x^{2} - 0.7922x + 1.4935$ 15 $R^2 = 0.6939$ 14 12 11 10 Floor # 9 8 7 6 5 y = -0.0078x + 0.81474 $R^2 = 0.0503$ Not significant 3 2 1 0.000 0.500 1.000 1.500 2.000 2.500 3.000 Floor 7 1 2 3 4 5 6 8 9 10 11 12 14 15 16 17 0.814 0.897 0.770 0.758 0.750 0.872 0.757 0.673 0.765 0.632 0.432 U-factor 1.007 0.736 0.887 0.516 1.145 U-factor [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 70/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

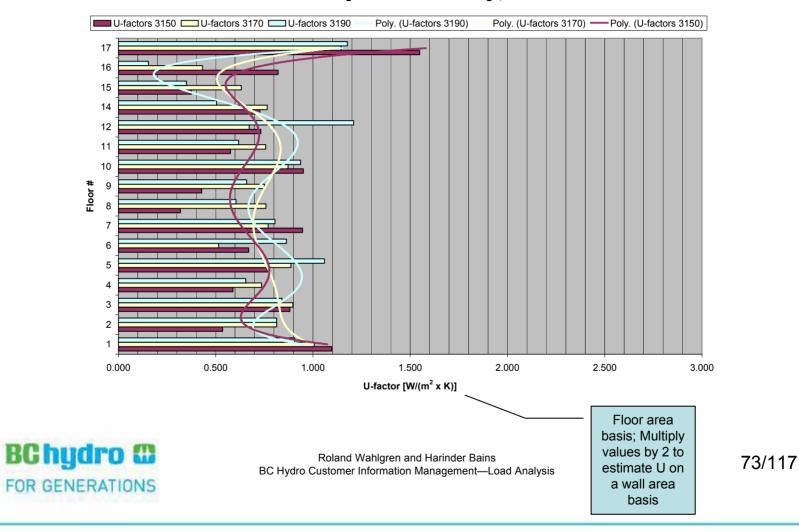
Weather sensitivity (U-factor) by floor

Case Study: HB Building ID # 500135, Abbotsford

Source: http://www.bing.com/maps

Building specifications

- Abbotsford
- 93 Suites, 16 levels
- Built 1992
- Estimated length from aerial view = 27.5 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 550 m²


Regency Park (Gladwin Road) tall buildings. Source: http://www.bing.com/maps

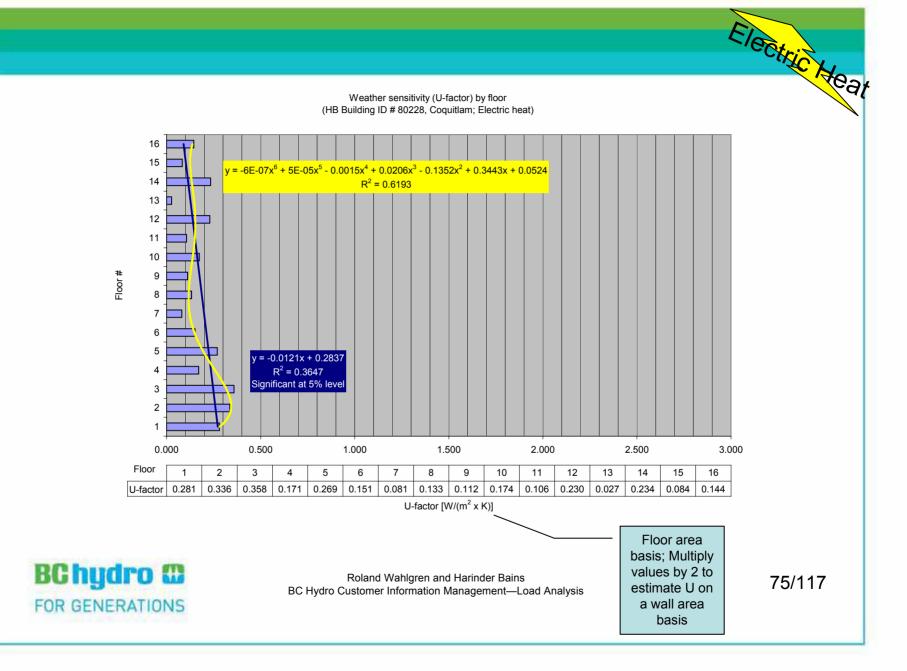
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 71/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 500135, Abbotsford; Electric heat) 17 16 $y = 4E-05x^6 - 0.0018x^5 + 0.0325x^4 - 0.2881x^3 + 1.2551x^2 - 2.4446x + 2.3998$ $R^2 = 0.691$ 15 14 12 11 10 Floor # 9 8 7 6 5 4 y = -0.0162x + 0.89713 $R^2 = 0.0736$ 2 Not significant 1 0.000 0.500 1.000 1.500 2.000 2.500 3.000 Floor 7 1 2 3 4 5 6 8 9 10 11 12 14 15 16 17 0.805 0.605 0.659 0.936 0.618 1.209 0.505 U-factor 0.906 0.814 0.841 0.655 1.059 0.864 0.350 0.155 1.177 U-factor [W/(m² x K)] Floor area basis; Multiply BC hydro @ values by 2 to Roland Wahlgren and Harinder Bains 72/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

U-factor comparisons between floors for trio of identical high-rise residential buildings, Abbotsford

Case Study: HB Building ID # 80228, Coquitlam

Source: http://www.bing.com/maps

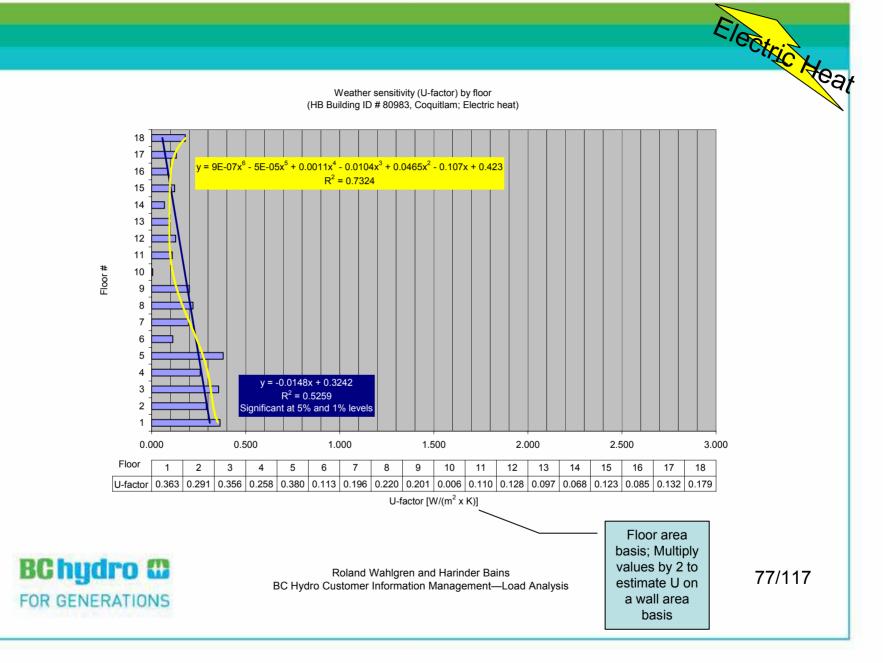

Building specifications

- Coquitlam
- 110 Suites, 16 levels
- Built 1993
- Estimated length from aerial view = 38 m
- Estimated width from aerial view = 26 m
- Estimated floor area = 988 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 74/117

Case Study: HB Building ID # 80983, Coquitlam

Source: http://www.bing.com/maps


Building specifications

- Coquitlam
- 109 Suites, 18 levels
- Built 1995
- Estimated length from aerial view = 38 m
- Estimated width from aerial view = 21 m
- Estimated floor area = 798 m²

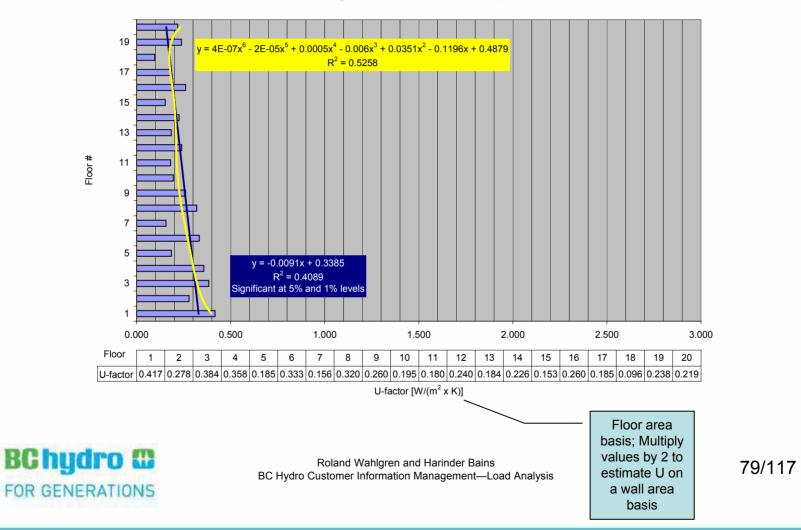


Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 76/117

Case Study: HB Building ID # 82957, Coquitlam

Source: http://www.bing.com/maps

Building specifications


- Coquitlam
- 135 Suites, 20 levels
- Built 1997
- Estimated length from aerial view = 36 m
- Estimated width from aerial view = 22 m
- Estimated floor area = 792 m²

BC hydro

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 78/117

Weather sensitivity (U-factor) by floor (HB Building ID # 80983, Coquitlam; Electric heat)

Case Study: SAS Building ID # 11121038, North Vancouver

http://www.bing.com/maps/

Building specifications

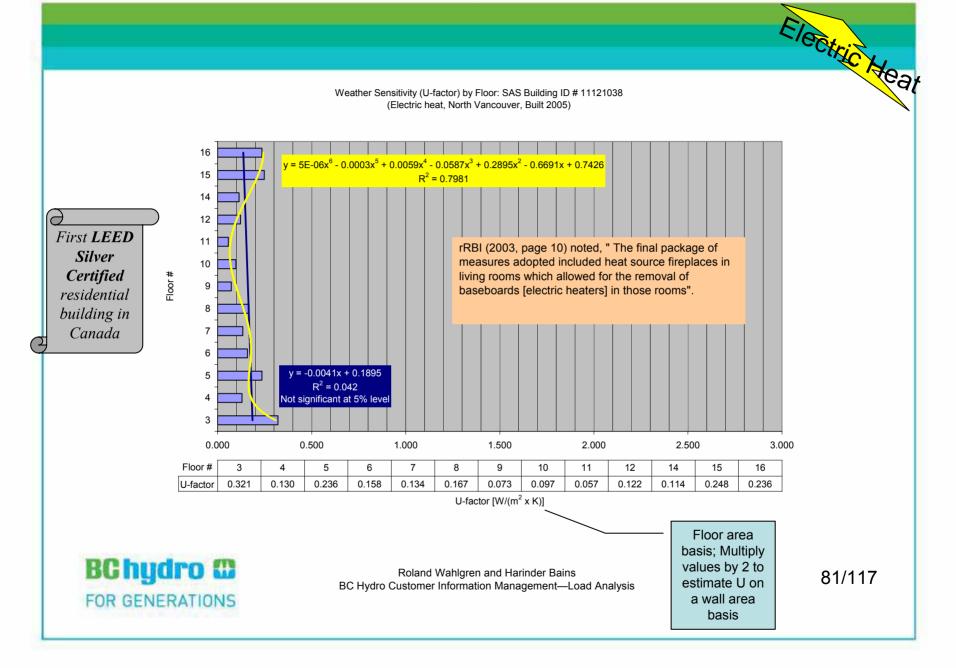
- North Vancouver
- 65 Suites, 13 levels, with 3 commercial levels
- Built 2005

• Solid concrete with punched windows, 6 inches of batt insulation between and behind interior studs; relatively low window to wall ratio (0.46) – (rRBI, 2003, 7)

- Gross Floor Area (GFA) = 8,200 m²
- Floor area = 513 m^2

Contribution of LEED[™] BC requirements to reducing weather sensitivity

• Building envelope designed to ASHRAE 90.1 1999


• "...more energy efficient than the typical curtain wall construction prevalent in the Greater Vancouver area.' (rRBI, 2003, 7)

• "...original envelope design is significantly better than local standard practice in terms of thermal performance." (rRBI, 2003, 10)

•30% savings for domestic hot water (rRBI, 2003, 10)

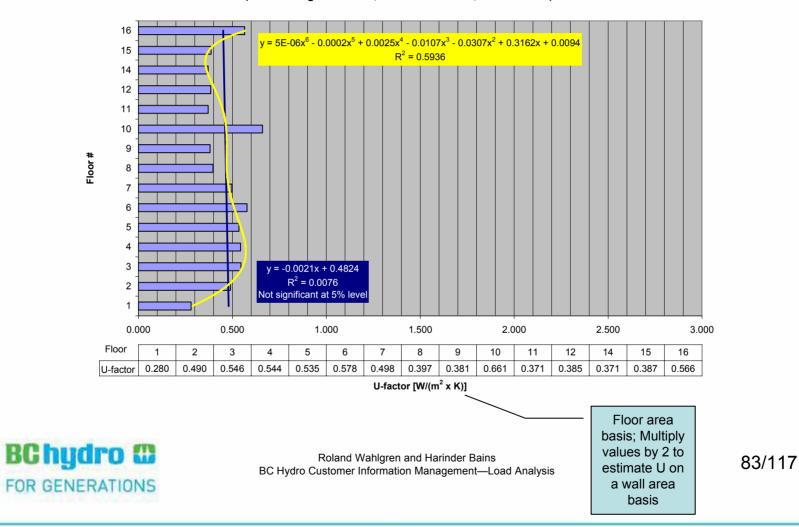
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 80/117

Case Study: HB Building ID # 48498, North Vancouver

Source: http://www.bing.com/maps

Building specifications

- North Vancouver
- 85 Suites, 15 levels
- Built 1981
- Estimated floor area = 472 m² (from areal view)



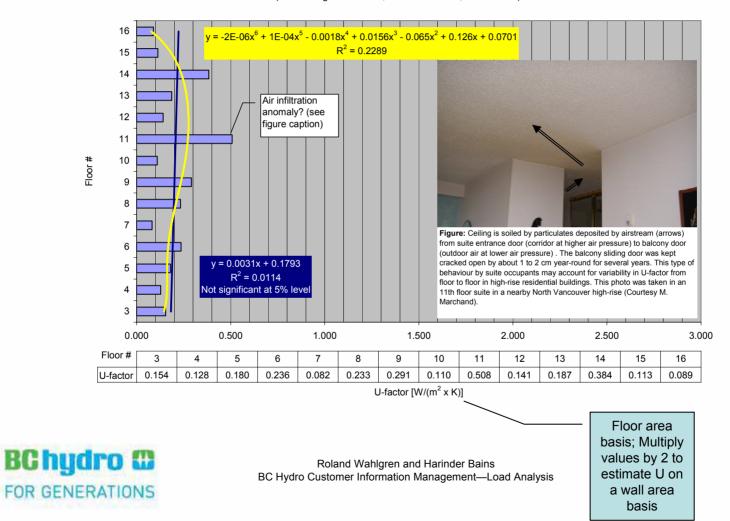
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

82/117

Weather sensitivity (U-factor) by floor (HB Building ID # 48498, North Vancouver; Electric heat)

Case Study: HB Building ID # 212087, North Vancouver

Source: http://www.bing.com/maps


Building specifications

- North Vancouver
- 85 Suites, 15 levels
- Built 1999
- · Concrete, glass
- Estimated length from aerial view = 27 m
- Estimated width from aerial view = 27 m
- Estimated floor area = 729 m²


Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 84/117

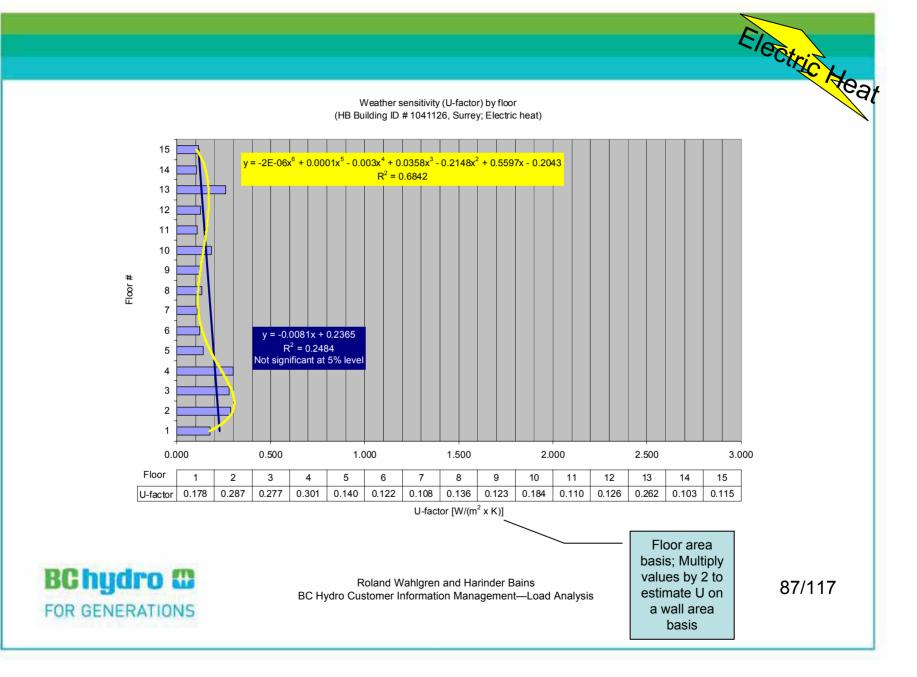
Weather sensitivity (U-factor) by floor (HB Building ID # 212087, North Vancouver, Electric heat)

85/117

Case Study: HB Building ID # 1041126, Surrey

Source: http://www.bing.com/maps

Building specifications


- Surrey
- 117 Suites, 15 levels
- Built 1994
- Estimated length from aerial view = 28 m
- Estimated width from aerial view = 25 m
- Estimated floor area = 700 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

86/117

Case Study: HB Building ID # 182490, Surrey

Source: http://www.bing.com/maps

Building specifications

- Surrey
- 90 Suites, 15 levels
- Built 1990
- Estimated diameter from aerial view = 31 m
- Estimated floor area = 755 m²

Source: http://www.bing.com/maps

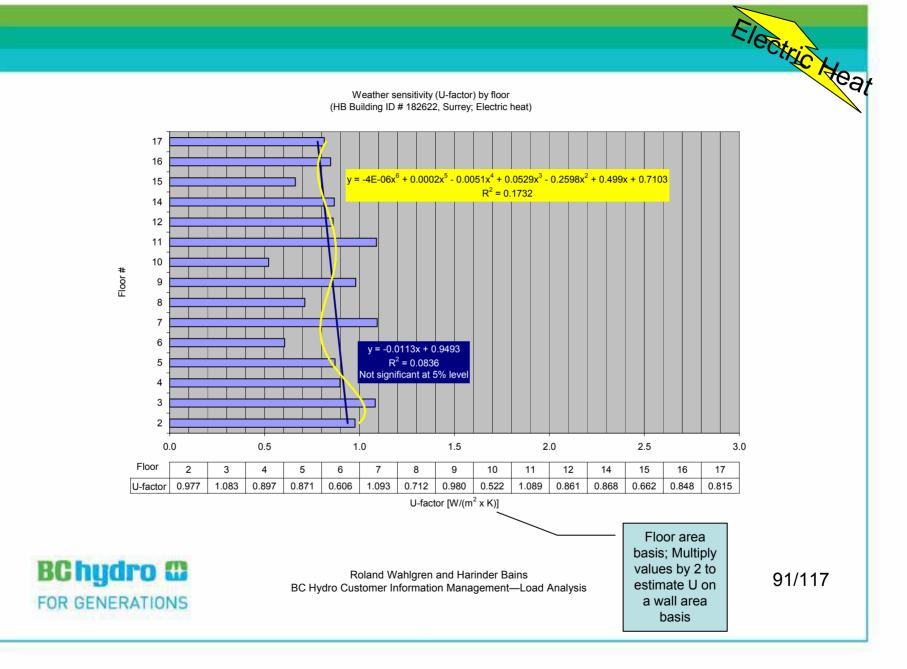
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 88/117

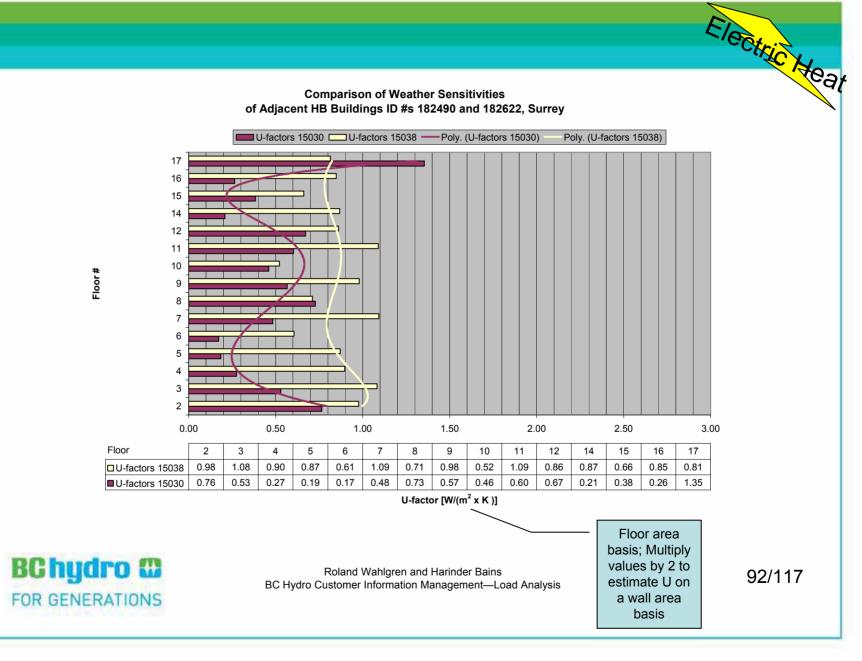
Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 182490, Surrey; Electric heat) 17 16 y = 1E-05x⁶ - 0.0004x⁵ + 0.0052x⁴ - 0.0443x³ + 0.2623x² - 0.9003x + 1.4755 15 $R^2 = 0.8306$ 14 12 11 10 Floor # 9 8 7 6 y = 0.0166x + 0.37745 $R^2 = 0.0589$ Not significant at 5% level 4 3 2 0.0 1.0 1.5 2.0 0.5 2.5 3.0 Floor 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 U-factor 0.765 0.530 0.275 0.728 0.566 0.603 0.672 0.209 0.185 0.172 0.483 0.460 0.384 0.265 1.354 U-factor [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 89/117 estimate U on BC Hydro Customer Information Management—Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 182622, Surrey

Source: http://www.bing.com/maps

Building specifications


- Surrey
- 90 Suites, 15 levels
- Built 1990
- Estimated diameter from aerial view = 31 m
- Estimated floor area = 755 m^2



Source: http://www.bing.com/maps

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 90/117

Case Study: HB Building ID # 134438, Surrey

Source: http://www.bing.com/maps

Building specifications

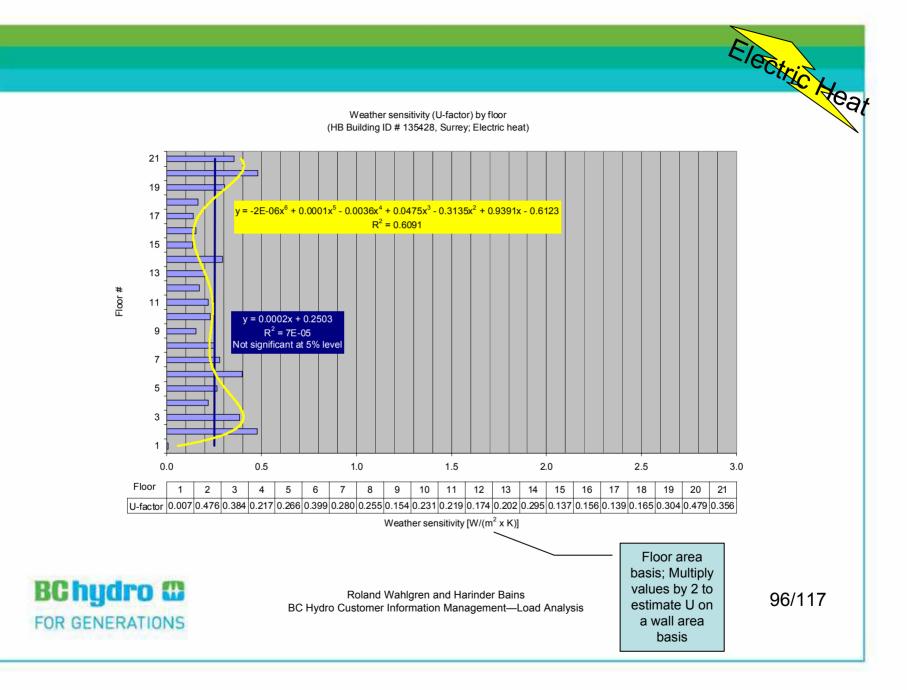
- Surrey
- 127 Suites, 18 levels
- Built 1993
- Estimated length from aerial view = 23 m
- Estimated width from aerial view = 23 m
- Estimated floor area = 529 m^2

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 93/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 134438, Surrey; Electric heat) 18 17 $y = 2E-06x^{6} - 0.0001x^{5} + 0.002x^{4} - 0.0179x^{3} + 0.0696x^{2} - 0.0698x + 0.1933$ 16 $R^2 = 0.5921$ 15 14 13 12 11 Floor # 10 9 8 7 6 5 4 y = 0.0041x + 0.21443 $R^2 = 0.0388$ 2 Not significant at 5% level 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Floor 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 U-factor 0.171 0.246 0.176 0.428 0.270 0.207 0.204 0.338 0.277 0.252 0.126 0.163 0.255 0.132 0.311 0.182 0.241 0.587 U-factor [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 94/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 135428, Surrey

Source: http://www.bing.com/maps


Building specifications

- Surrey
- 149 Suites, 21 levels
- Built 1993
- Estimated length from aerial view = 24 m
- Estimated width from aerial view = 24 m
- Estimated floor area = 576 m^2

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 95/117

Case Study: HB Building ID # 176403, Surrey

Source: http://www.bing.com/maps

Building specifications

- Surrey
- 96 Suites, 20 levels
- Built 1994
- Estimated length from aerial view = 21 m
- Estimated width from aerial view = 18 m
- Estimated floor area = 378 m²

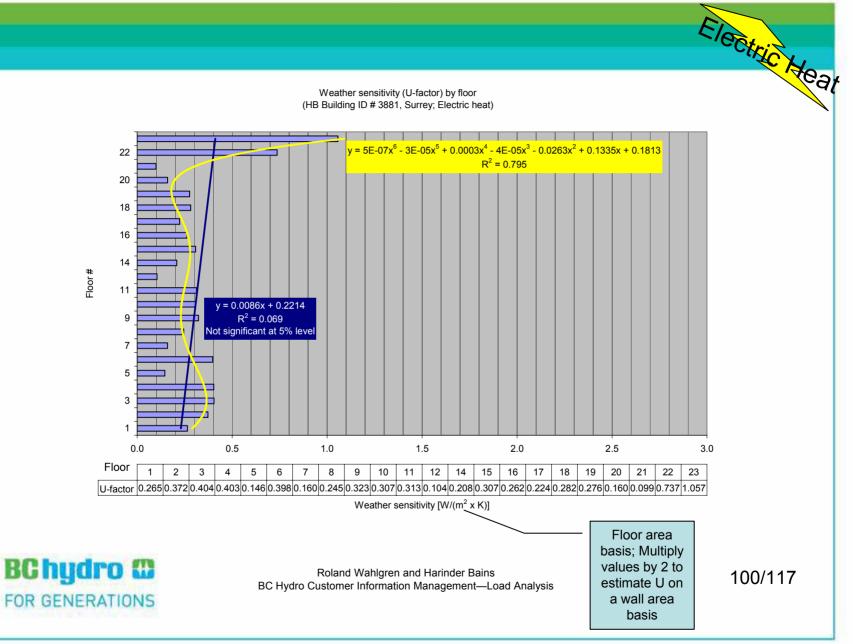
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 97/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 176403, Surrey; Electric heat) 20 $y = 1E-06x^6 - 7E-05x^5 + 0.0017x^4 - 0.0193x^3 + 0.0924x^2 - 0.1359x + 0.7354$ $R^2 = 0.2633$ 18 16 14 Floor # y = -0.0187x + 0.8279 11 $R^2 = 0.2003$ Significant at 5% level 9 7 5 3 1 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Floor 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 19 20 21 U-factor 0.761 0.496 0.799 0.885 1.132 0.418 0.716 1.135 0.413 0.441 0.605 0.694 0.661 0.656 0.220 0.805 0.345 0.590 0.535 0.331 Weather sensitivity [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 98/117 estimate U on BC Hydro Customer Information Management-Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 3881, Surrey

Source: http://www.bing.com/maps

Building specifications


- Surrey
- 163 Suites, 22 levels
- Built 1992
- Estimated floor area from aerial view = 640 m²

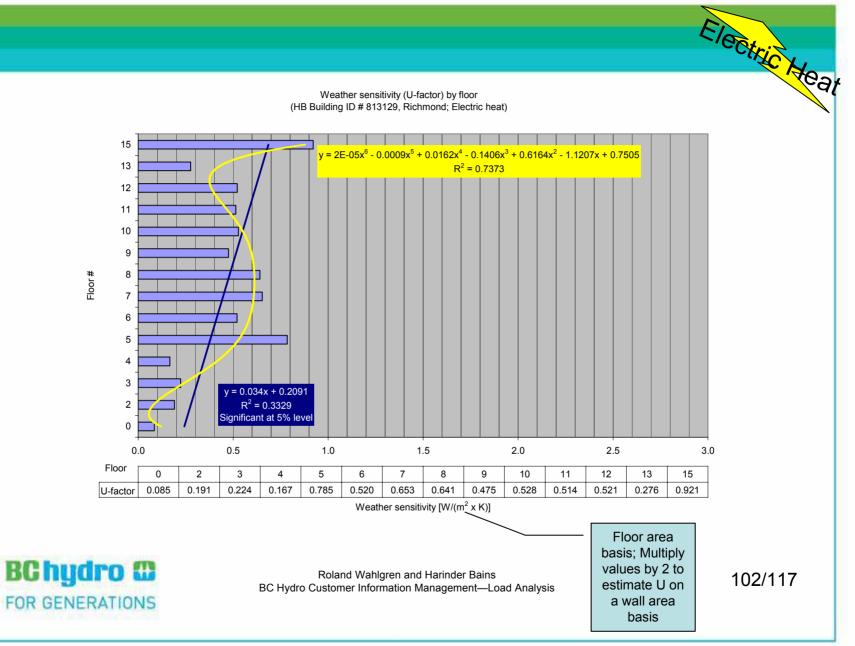
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 99/117

Weather sensitivity (U-factor) by floor (HB Building ID # 3881, Surrey; Electric heat)

Case Study: HB Building ID # 813129, Richmond

Source: http://www.bing.com/maps

Building specifications


- Richmond
- 88 Suites, 14 levels
- Built 1996
- Estimated length from aerial view = 26 m
- Estimated width from aerial view = 24.5 m
- Estimated floor area = 637 m^2

BC hydro

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 101/117

Weather sensitivity (U-factor) by floor (HB Building ID # 813129, Richmond; Electric heat)

Case Study: HB Building ID # 798145, Richmond

Source: http://www.bing.com/maps

Building specifications

- Richmond
- 88 Suites, 11 levels
- Built 2003
- Estimated length from aerial view = 29 m
- Estimated width from aerial view = 22 m
- Estimated floor area = 638 m²

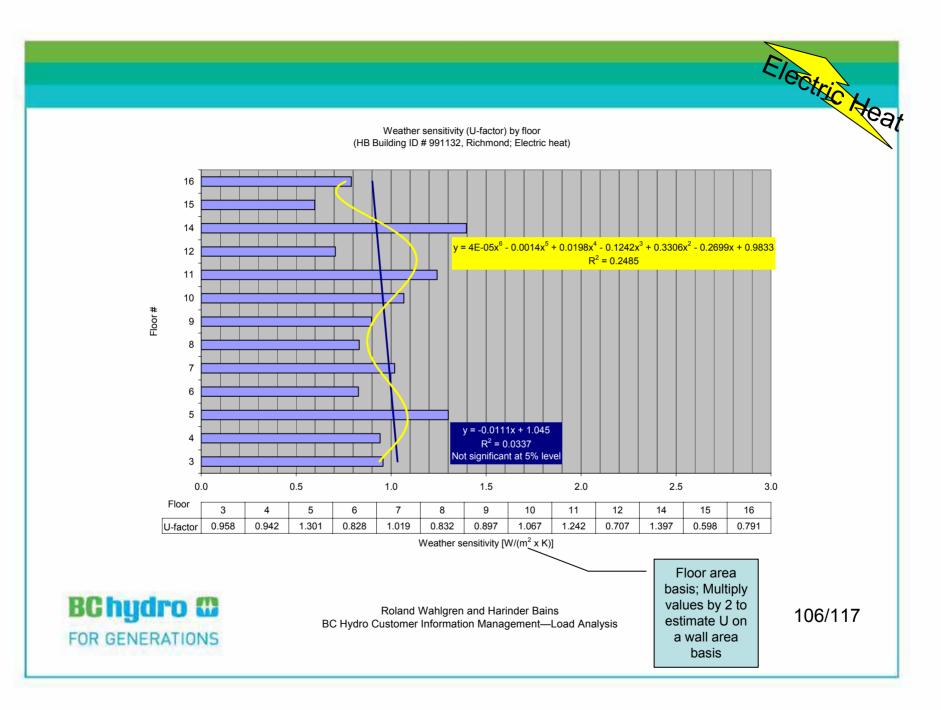
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 103/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 798145, Richmond; Electric heat) 16 15 $y = 0.0002x^{6} - 0.0087x^{5} + 0.135x^{4} - 1.0089x^{3} + 3.7367x^{2} - 6.3531x + 4.86$ $R^2 = 0.7522$ 12 11 y = -0.0925x + 1.309510 $R^2 = 0.5484$ Floor # Significant at 5% and 1% levels 9 8 7 6 5 4 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Floor 4 5 6 7 8 9 10 11 12 15 16 1.052 1.617 0.617 0.480 0.428 0.504 0.487 0.630 0.327 U-factor 1.342 0.818 Weather sensitivity [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 104/117 estimate U on BC Hydro Customer Information Management—Load Analysis a wall area FOR GENERATIONS basis

Case Study: HB Building ID # 991132, Richmond

Source: http://www.bing.com/maps

Building specifications


- Richmond
- 118 Suites, 13 levels
- Built 1995
- Estimated floor area from aerial view = 531 m²

Source: http://www.bing.com/maps

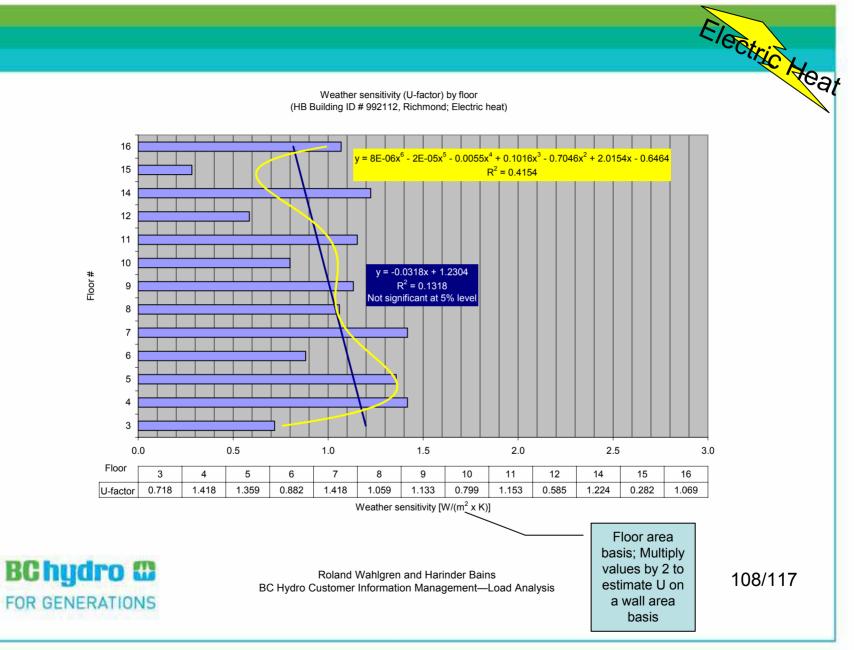
Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 105/117

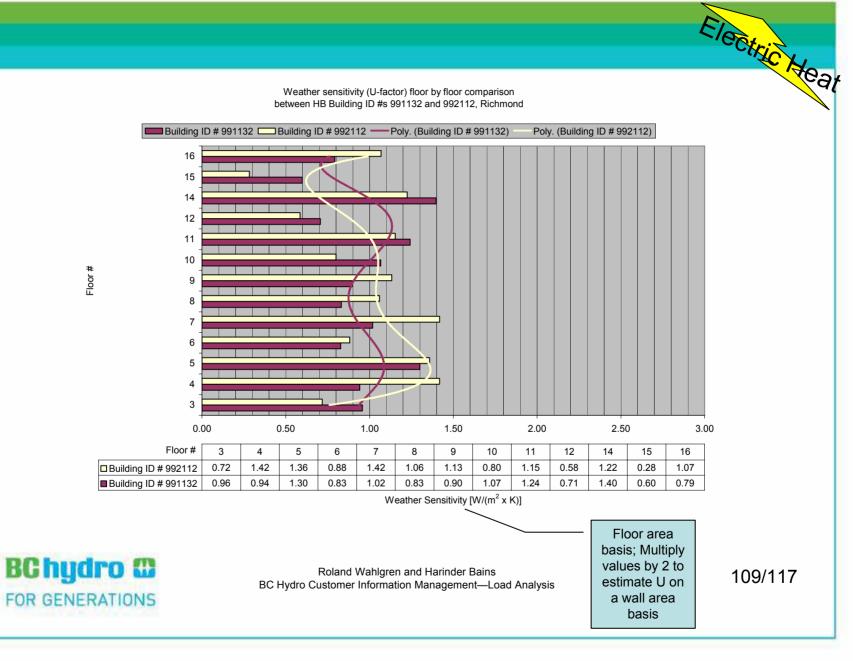
Case Study: HB Building ID # 992112, Richmond

Source: http://www.bing.com/maps

Building specifications

- Richmond
- 115 Suites, 13 levels
- Built 1995
- Estimated floor area from aerial view = 531 m²




Source: http://www.bing.com/maps

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 107/117

Weather sensitivity (U-factor) by floor (HB Building ID # 992112, Richmond; Electric heat)

Case Study: HB Building ID # 914626, Richmond

Source: http://www.bing.com/maps

Building specifications

- Richmond
- 106 Suites, 15 levels
- Built 1992
- Estimated length from aerial view = 35 m
- Estimated width from aerial view = 20 m
- Estimated floor area = 700 m²

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

110/117

Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 914626, Richmond; Electric heat) 17 16 $y = 3E-05x^6 - 0.0015x^5 + 0.0257x^4 - 0.2058x^3 + 0.7718x^2 - 1.0655x + 0.5123$ 15 $R^2 = 0.8442$ 14 12 11 10 Floor # 9 8 7 6 5 y = 0.046x + 0.1584 4 $R^2 = 0.2568$ 3 not significant at 5% level 2 h 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Floor 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 U-factor 0.017 0.681 0.386 0.215 0.539 0.203 0.398 0.752 0.286 0.479 0.521 0.438 0.489 0.686 1.807 Weather sensitivity [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 111/117 estimate U on BC Hydro Customer Information Management-Load Analysis FOR GENERATIONS a wall area basis

Case Study: HB Building ID # 950708, Richmond

Source: http://www.bing.com/maps

Building specifications

- Richmond
- 109 Suites, 14 levels
- Built 2003
- Estimated length from aerial view = 29 m
- Estimated width from aerial view = 26 m
- Estimated floor area = 754 m^2

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 112/117

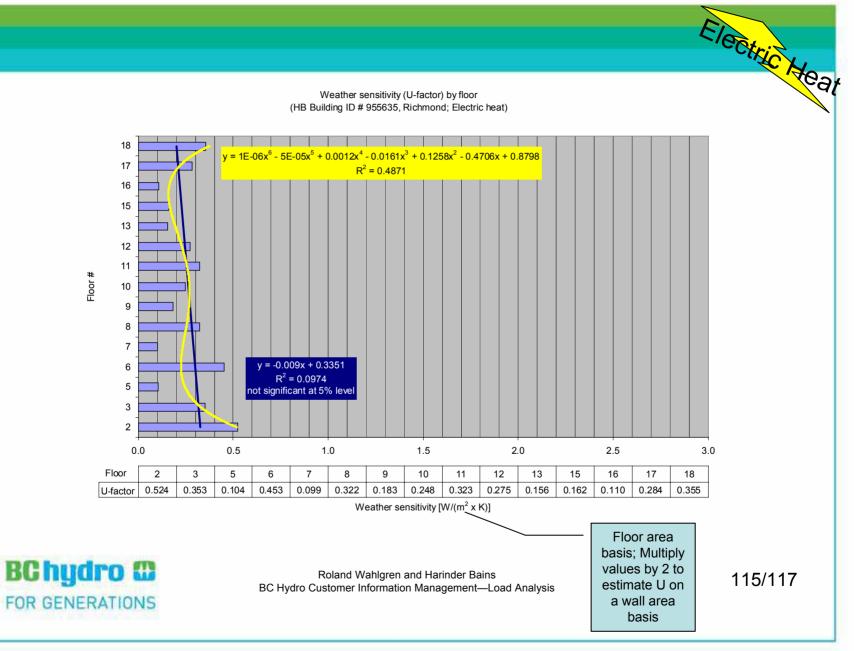
Electric Heat Weather sensitivity (U-factor) by floor (HB Building ID # 950708, Richmond; Electric heat) 18 17 $y = -2E - 05x^{6} + 0.0009x^{5} - 0.0179x^{4} + 0.1816x^{3} - 0.9209x^{2} + 2.0294x - 0.6146$ 16 $R^2 = 0.7399$ 15 13 12 11 Floor # 10 y = -0.0316x + 0.73169 $R^2 = 0.3258$ Significant at 5% leve 8 7 6 5 3 2 1.0 0.0 0.5 1.5 2.0 2.5 3.0 Floor 2 3 5 6 7 8 9 10 11 12 13 15 16 17 18 0.765 0.438 0.582 U-factor 0.702 1.135 0.360 0.422 0.271 0.440 0.440 0.180 0.182 0.303 0.418 0.549 Weather sensitivity [W/(m² x K)] Floor area basis; Multiply BC hydro values by 2 to Roland Wahlgren and Harinder Bains 113/117 estimate U on BC Hydro Customer Information Management-Load Analysis FOR GENERATIONS a wall area basis

Case Study: HB Building ID # 955635, Richmond

Source: http://www.bing.com/maps

Building specifications

- Richmond
- 113 Suites, 15 levels
- Built 1999
- Estimated length from aerial view = 24 m
- Estimated width from aerial view = 21 m
- Estimated floor area = 504 m^2



BC hydro

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis

114/117

Weather sensitivity (U-factor) by floor (HB Building ID # 955635, Richmond; Electric heat)

Conclusions

High-Rise Residential Building Weather Sensitivity for British Columbia Case Studies outside Vancouver and Burnaby

Important findings include:

- Weather-driven electrical energy consumption in a sample of 35 electrically heated residential high-rise buildings outside of Vancouver/Burnaby often is stable with height (69%), sometimes decreases with height (28%), or rarely increases with height (3%). We speculate that gas-heated common area temperatures may be driving these patterns. Instrumentation of individual buildings is needed to verify this conjecture;
- Analyses of weather sensitivity of electrical heating is confounded by natural gas heating of building common areas. This heat infiltrates suites that also have electrical baseboard heaters;
- When gas heating data is available for a building the relative proportions of gas and electric heating can be estimated, as can the efficiency of the gas heating system; and
- Missing gas data can be inferred if: (1) weather sensitivity of electric energy consumption is known and (2) a reasonable assumption is made about a building enclosure's thermal transmissivity. <u>Rehabilitation of building enclosures for gas/electric buildings reduces the proportion of gas consumed but increases the proportion of electrical energy consumed.</u> This finding is relevant to the goal of reducing greenhouse gas emissions in BC.

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 116/117

References

- ASHRAE (2005) ASHRAE Handbook—Fundamentals (SI). American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.
- Ellis, P. G. and Torcellini, P. A. (2005) Simulating Tall Buildings Using EnergyPlus. *In Building Simulation 2005*, Ninth International IBPSA Conference, Montreal, Canada, August 15-18, 2005. Available at http://www.ibpsa.org/proceedings/BS2005/BS05_0279_286.pdf (Mar 5, 2010)
- Ross, D. E. (2004) *HVAC Design Guide for Tall Commercial Buildings*, Atlanta, GA.: American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. [Cited by Ellis and Torcellini (2005)]
- rRBI (2003) The Silva Project: A Case Study of the Application of LEED[™] BC to a highrise residential development, Report prepared by reSource Rethinking Building Inc. for the Greater Vancouver Regional District, Policy & Planning Department & reviewed by the LEED BC Steering Committee, December 2003 (Available at <u>http://www.metrovancouver.org/buildsmart/resources/CaseStudies/silvacasestudyresourcerethink.pdf</u>, March 30, 2010)
- Wahlgren, Roland. and Bains, Harinder. (2010) Tall Building Climatology for British Columbia (Residential): Overview and analyses of aggregated data. BC Hydro Customer Information Management—Load Analysis, BC Hydro, Burnaby, BC. Available in online Load Research Library, <u>http://bchx/library/Page.asp?pageld=117</u> (June 23, 2010)

Roland Wahlgren and Harinder Bains BC Hydro Customer Information Management—Load Analysis 117/117