Heating/Cooling Degree-day Seasonality in British Columbia

BChydro

BC Hydro Customer Information Management—Load Analysis BC Hydro, Burnaby, British Columbia

January 2010

Table of Contents

HEATING/COOLING DEGREE-DAY SEASONALITY IN BRITISH COLUMBIA	3
INTRODUCTION	3
DATA SOURCES	
Methods	4
CWEC data sets HDD and CDD	4
HDD and CDD from Environment Canada data sets	
Cluster analyses for allocating months to seasons	
Regression analyses for HDD/CDD relationships between Vancouver and other BC stations	
Temporal stability analyses of HDD and CDD regimes	
Sensitivity analyses of Vancouver's HDD/CDD to changes in the north-eastern Pacific Ocean climate regime	
RESULTS OF CLUSTER ANALYSES	6
CWEC data sets—allocation of months to seasons	6
Environment Canada data sets—allocation of months to seasons	9
RESULTS OF ANALYSES OF HEATING AND COOLING DEGREE DAY RELATIONSHIPS BETWEEN VANCOUVE	R
AND OTHER BC STATIONS	. 22
Heating degree days	. 22
Cooling degree days	. 25
RESULTS OF ANALYSES OF TEMPORAL STABILITY OF HDD AND CDD REGIMES	. 27
Trends	. 27
Cycles	
Overall temporal stability	. 30
Results of sensitivity analyses of Vancouver's HDD to changes in the NE Pacific Ocean climate	
regime	
Southern Oscillation Index	. 30
Pacific Decadal Oscillation Index	
North Pacific Index	
Aleutian Low Pressure Index	
Pacific North American Index	
Strength of HDD relationships to indices	
CONCLUSIONS	. 40
References	. 41
Appendix 1	
Results from CWEC datasets	. 43
APPENDIX 2	
Results from Environment Canada multi-decade data sets	. 57

Heating/Cooling Degree-day Seasonality in British Columbia

Introduction

Had composer Antonio Vivaldi been a load research analyst at BC Hydro he may have titled one of his most famous works *The Three Seasons* instead of the usual four. Classification of months into seasons having meaningful, stable relationships to electrical load demand was required to pursue weather sensitivity analyses of BC Hydro's account rate classes and site types. Three seasons were recognized from cluster analyses of heating/cooling degree day (HDD/CDD) data: summer, winter, and "shoulder". Summer always included June–August. Winter included November-March; April and October were always shoulder or transition months. May and September were sometimes shoulder and sometimes summer months. In addition to classifying the months in the context of BC's climate, the analyses revealed intriguing cycles and trends that were investigated in a separate research project for their predictive benefits (Wahlgren, 2010).

Data sources

The assessment used the following data sources: Canadian Weather for Energy Calculations (CWEC; 12 stations shown in Figure A-1-1; Meteorological Service of Canada, 2007) and a weather database from 1953-2008 (4 stations shown in Figure A-2-1) supplied to BC Hydro by Environment Canada.

The CWEC files were prepared under the direction of the Meteorological Service of Canada (MSC) and the National Research Council of Canada (NRC). Twelve CWEC files were available for BC stations (Table 1). The User's Manual (MSC, 2007) stated¹:

The CWEC files are created by concatenating twelve Typical Meteorological Months selected from a database of, in most cases, 30 years of WYEC2 data. The method is similar to TMY procedure developed in the eighties by Sandia Laboratories. The months are chosen by statistically comparing individual monthly with long-term monthly means for daily total global radiation, mean, minimum and maximum dry bulb temperature, mean, minimum and maximum dew point temperature, and mean and maximum wind speed.

Lower Mainland	Vancouver Island	Northern Region	Interior Region
Abbotsford	Comox	Fort St John	Kamloops
Vancouver	Port Hardy	Prince George	Summerland
	Victoria	Prince Rupert	
		Sandspit	
		Smithers	

Table 1: Twelve stations with CWEC files tabulated according to BC Hydro's four administrative (sales) regions. Stations in bold were representative weather stations for their region according to Yu (2007).

CWEC files had always 8760 records representing each hour of the year. February had always 28 days in the CWEC files.

¹ WYEC2 data refers to Weather Year for Energy Calculation, Version 2, devised by the American Society of Heating, Refrigerating and Air-conditioning Engineers, Inc. (ASHRAE).

Methods

CWEC data sets HDD and CDD

Monthly heating degree days, HDD, [kelvin·days], based on an 18°C balance temperature and hourly dry bulb temperature, t_{db} , observations were calculated in SAS software in three steps, namely

Step 1: Calculate daily mean air temperature (dry bulb, °C)

$$\bar{t}_{db} = \frac{\sum_{i=1}^{24} t_{db_i}}{24}$$
(1)

Step 2: Calculate daily heating degree days (kelvin·days)

$$Daily _ HDD = \sum_{j=1}^{24} (18 - \bar{t}_{db})_{j}$$
(2)

Step 3: Calculate monthly heating degree days (kelvin days)

$$Monthly_HDD = \sum_{k=1}^{N} Daily_HDD_k$$
(3)

where N = number of days in month (February always has 28 days).

Similarly, cooling degree days based on a 20°C balance temperature were calculated as

Step 1: Equation (1)

Step 2: Calculate daily cooling degree days (kelvin·days)

$$Daily _CDD = \sum_{j=1}^{24} (\bar{t}_{db} - 20)_{j}$$
(4)

Step 3: Calculate monthly heating degree days (kelvin·days)

$$Monthly _CDD = \sum_{k=1}^{N} Daily _CDD_k$$
(5)

For both HDD and CDD, only positive values were counted.

HDD and CDD from Environment Canada data sets

Because the Environment Canada (EC) data sets represented real observations in contrast to the CWEC synthesized Typical Meteorological Year, HDD and CDD formulas used in processing the EC data were adjusted to give full weight to quadri-annual instances of a 29-day February. Monthly HDD/CDD values were normalized by the average number of days in a month (30.5 days).

Normalized HDD =
$$(Monthly_HDD / N) \times 30.5$$
 (6)

Normalized CDD =
$$(Monthly_CDD / N) \times 30.5$$
 (7)

where N = number of days in month (February has 28 days but 29 days in leap-years).

Cluster analyses for allocating months to seasons

The data was subjected to cluster analyses using the SAS statistical analysis software procedures PROC CLUSTER (Ward's minimum variance method) and PROC TREE. SAS software made available a choice of eleven different clustering methods. Four of these clustering methods (Ward, average, complete, and single linkage) were tested on the CWEC data for Vancouver Airport —all gave the same result.

The SAS 9.2 User's Guide stated:

Many simulation studies comparing various methods of cluster analysis have been performed. In these studies, artificial data sets containing known clusters are produced using pseudo-random-number generators. The data sets are analyzed by a variety of clustering methods, and the degree to which each clustering method recovers the known cluster is evaluated...In most of these studies, the clustering method with the best overall performance has been either average linkage or Ward's minimum variance method.

On this basis, classification of months into seasons used Ward's method as the standard.

Regression analyses for HDD/CDD relationships between Vancouver and other BC stations

The strength of HDD and CDD relationships between Vancouver and each of Victoria, Prince George, and Kelowna was examined using regression analyses. This was done to determine if it would be appropriate to use Vancouver's HDD/CDD and seasons as a proxy for these three parameters in the rest of BC.

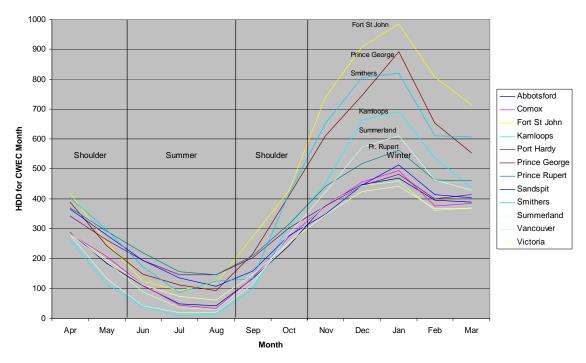
Temporal stability analyses of HDD and CDD regimes

Possible cycles and trends were noticed in the charts of HDD and CDD against time spanning almost six decades. Trends and cycles were analysed in a separate project (Wahlgren, 2010) to discover whether or not the cycles or trends were statistically significant and likely to affect the seasonal classification.

Sensitivity analyses of Vancouver's HDD/CDD to changes in the north-eastern Pacific Ocean climate regime

The sensitivity of HDD and CDD in the four BC Hydro sales regions to changes in the North-eastern Pacific Ocean's climate regime was checked against several indices in a separate project (Wahlgren, 2010). Again, the goal was to see if the sensitivity was great enough to affect the classification of months into seasons.

Results of cluster analyses


CWEC data sets—allocation of months to seasons

The CWEC data sets provided spatial information on HDD and CDD representing the more densely populated regions in British Columbia. HDD and CDD results were tabulated in Appendix 1 along with the tree diagrams illustrating results of the cluster analyses.

HDD and CDD results for the twelve stations were summarized in Tables 2 and 3. Summer always included June, July, and August. Winter always included November-March. The shaded values were associated with shoulder months which were defined by the cluster analyses. Figures 1 and 2 are visual representations of Tables 2 and 3 respectively. Months along the time-axis run from April to March to correspond to BC Hydro's fiscal year of April 1–March 31. In this manner, the summer and winter seasons are kept intact. Calendar year chart presentations interrupt BC's winter season. The vertical lines bracket the beginning and end of the shoulder month pairs: April and May; September and October.

Table	2
rabic	4

Sun	nmary o	of CV	VEC Sta	tion Re	esults								
HDD)												
Month	Abbateford	Comox	Fort St. John	Kamloons	Port Hardy	Prince George	Bringe Bupert	Sandenit	Smithors	Summarland	Vancouvor	Victoria	% of all BC shoulder
Apr	287	283	418	-	-	389	370	-	403	279	279	285	
May	184	208	254		263	243		280	295	133	191	196	
Jun	109	111	125	41	195	148	220	195	174	42	88	111	
Jul	48	45	92	8	145	113	157	136	87	19	35	73	
Aug	42	34	118	15	146	94	145	107	124	21	30	62	
Sep	134	136	272	98	203	215	209	158	134	114	127	146	0.17
Oct	243	272	428	309	302	410	314	276	416	281	253	254	0.92
Nov	382	376	740	453	377	612	441	349	654	423	382	346	
Dec	449	456	910	663	445	747	517	447	805	573	445	426	
Jan	470	494	985	691	481	892	563	513	820	611	459	441	
Feb	396	377	807	536	399	653	464	414	612	463	361	368	
Mar	389	385	714	438	415	554	460	404	606	429	369	367	
	Shading den	otes mor	th in shoulder	season									

CWEC Stations - HDD for CWEC months (BC Hydro fiscal year April 1- March 31)

Figure 1: Summary of CWEC Station results for HDD

Table	e 3												
Sun	nmary o	of CV	/EC Sta	tion Re	esults								
CDD)												
Month	Abbotsford	Comox	Fort St John	Kamloons	Port Hardy	Prince George	Prince Rupert	Sandsnit	Smithers	Summerland	Vancouver	Victoria	% of all BC shoulder mo
Apr	Abbotaioi d	0	0	0	0	0	0	0	0	0	0	0	0.75
May	6	0	0	11	0	0	0	0	0	3	0	0	0.58
Jun	0	2	6	55	0	3	0	0	0	38	0	0	
Jul	13	16	7	112	0	4	0	0	20	84	3	5	
Aug	14	11	12	86		8	0	0	2	59	1	3	
Sep	0	0	0	23	0	0	0	0	0	15	0	0	0.17
Oct	0	0	0	0	0	0	0	0	0	0	0	0	0.92
Nov	0	0	0	0	0	0	0	0	0	0	0	0	
Dec	0	0	0	0	0	0	0	0	0	0	0	0	
Jan	0	0	0	0		0	0	0	0	0	0	0	
Feb	0	0	0	0	-	0	0	•	-	0	0	0	
Mar	0	0	0	0	0	0	0	0	0	0	0	0	
	Shading den	otes mor	th in shoulder	season									

CWEC Stations - CDD for CWEC months (BC Hydro fiscal year April 1- March 31)

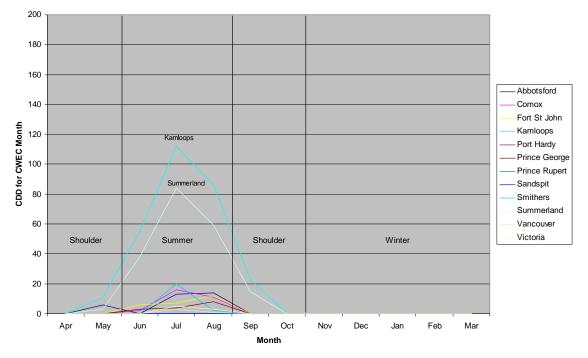
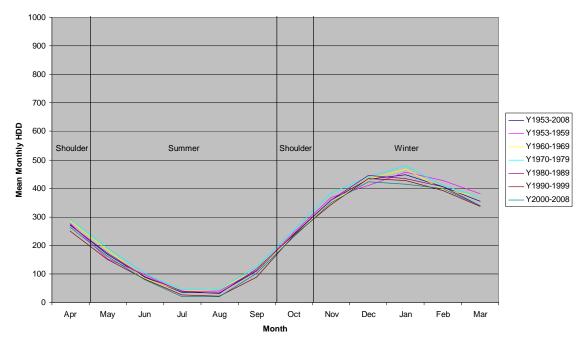


Figure 2: Summary of CWEC Station results for CDD

Environment Canada data sets—allocation of months to seasons


The essential value of the Environment Canada data sets for Vancouver Airport, Victoria Airport, Kelowna Airport and Prince George Airport was to provide a temporal view of HDD and CDD in British Columbia. Trends or cycles in mean monthly HDD and CDD were apparent in the charts shown in this section. Trends may be associated with global climate change and cycles with climate variability (related to, for example, the Pacific Decadal Oscillation, PDO, with a period of 50–60 years; BC, 2002). Trends and/or cycles may affect electrical load demand for space heating in the future. Quantitative analyses of trends and cycles were done in a separate report (Wahlgren, 2010). Here, it is relevant to mention that Wahlgren (2010) used Kamloops Airport air temperature data (which is being collected on an ongoing basis commencing 1994) rather than Kelowna Airport data (which ceased being collected in 2004 and had a major gap 1994–2001).

HDD and CDD results were tabulated in Appendix 2 along with the tree diagrams illustrating results of the cluster analyses. Tables 4–12 summarize the HDD/CDD calculations for the four EC stations. Figures 3–19 are visual representations of the tabulated values. Similar to the analyses for the synthesized CWEC data, charts show how HDD and CDD varied by month. Because the EC data were from actual observations, it was also possible to produce a set of charts showing how HDD/CDD varied through the six decades of 1953–2008.

Results were similar to those for the CWEC data. Summer always included June, July, and August. Winter comprised November–March. April and October were always shoulder months. September and May switched between the shoulder and summer seasons.

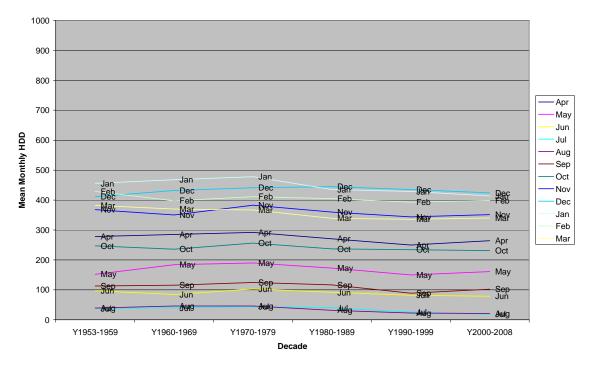
Sur	nmary o	of Vanc	ouver A	Airport F	Results		
HDD)						
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr	273	278	285	292	271	250	264
May	169	152	184	190	173	150	161
Jun	89	97	85	103	92	82	79
Jul	35	38	40	44	40	26	19
Aug	34	39	46	46	32	23	21
Sep	110	113	116	125	117	89	102
Oct	240	247	236	256	237	234	231
Nov	359	368	350	383	360	344	351
Dec	432	411	432	441	445	435	424
Jan	447	456	468	478	435	429	414
Feb	405	429	398	411	405	393	399
Mar	355	382	370	367	339	336	340
	Shading den	otes month ir	shoulder sea	ason			

Table 4: Summary of Vancouver Airport mean monthly HDD based on 10-year intervals. Compare to Table 5

Vancouver Airport - Mean monthly HDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)

Figure 3: Vancouver Airport mean monthly HDD for 1953–2008 and corresponding decades

Vancouver Airport - Mean monthly HDD by decade



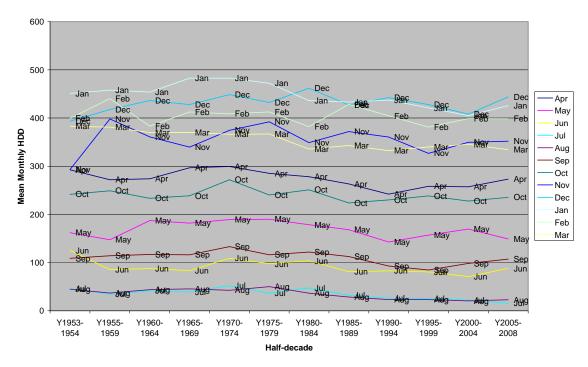

Figure 4: Vancouver Airport mean monthly HDD through six decades with hints of trends and cycles. See Figure 5 which is by half-decade, doubling number of data points. See also Table 13 which recorded significant (0.05 level) decreasing HDD trends for the Lower Mainland in Apr, Jun, Jul, Aug, Sep, Jan, and Mar based on analyses in Wahlgren (2010)

Table 5: Summary of Vancouver Airport mean monthly HDD based on 5-year intervals. Compare to Table 4

Summary of Vancouver Airport Results

HDD												
Month	Y1953-1954	Y1955-1959	Y1960-1964	Y1965-1969	Y1970-1974	Y1975-1979	Y1980-1984	Y1985-1989	Y1990-1994	Y1995-1999	Y2000-2004	Y2005-2008
Median Year												
Reference for												
chart plot	1953.5	1957	1962	1967	1972	1977	1982	1987	1992	1997	2002	2006.5
Apr	292	272	274	297	300	285	278	263	242	258	257	273
May	162	148	187	182	189	190	178	168	143	157	170	149
Jun	125	85	87	83	109	97	104	81	83	80	71	88
Jul	46	34	41	39	52	37	47	32	26	25	22	15
Aug	45	37	44	45	42	50	36	28	23	23	21	23
Sep	109	114	117	116	133	116	122	112	93	85	98	107
Oct	242	249	233	238	272	240	251	224	230	238	228	235
Nov	293	398	361	340	375	392	349	372	360	327	350	352
Dec	393	418	437	428	449	432	462	427	442	428	408	444
Jan	451	458	454	483	483	472	436	433	437	421	405	426
Feb	399	440	383	413	409	413	382	428	405	381	399	398
Mar	383	381	370	370	366	367	336	343	332	340	345	334

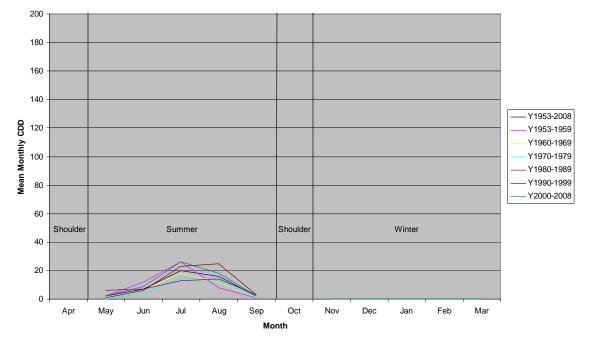
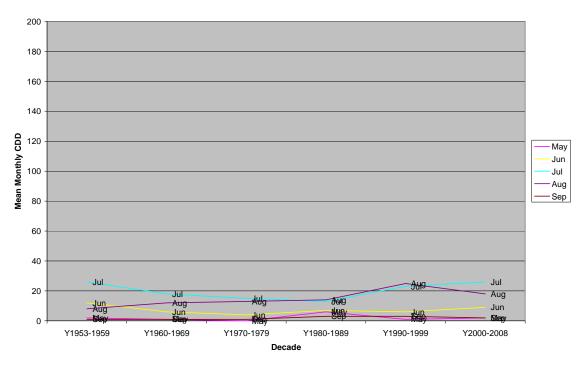
Shading denotes month in shoulder season

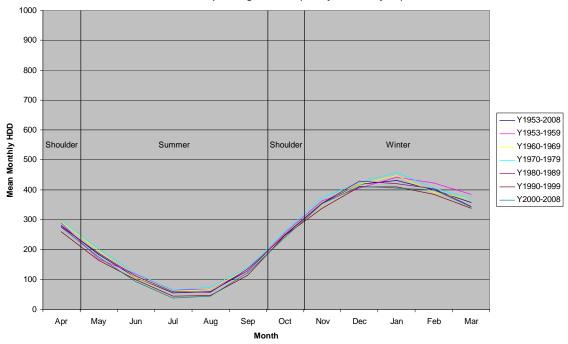
Vancouver Airport - Mean monthly HDD by half-decade

Figure 5: Vancouver Airport mean monthly HDD through six decades. See summary of decreasing HDD trends by month in Table 13

Table 6							
Sur	nmary o	of Vanc	ouver A	Airport F	Results		
CDD)						
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr							
May	2	2	1	0	6	1	2
Jun	7	12	6	4	7	6	9
Jul	20	26	18	15	13	23	26
Aug	16	8	12	13	14	25	18
Sep	2	1	1	1	3	3	2
Oct							
Nov	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0
Jan	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0
	Shading den	otes month in	n shoulder sea	ason			

Vancouver Airport - Mean monthly CDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)


Figure 6: Vancouver Airport mean monthly CDD for 1953–2008 and corresponding decades

Vancouver Airport - Mean monthly CDD by decade

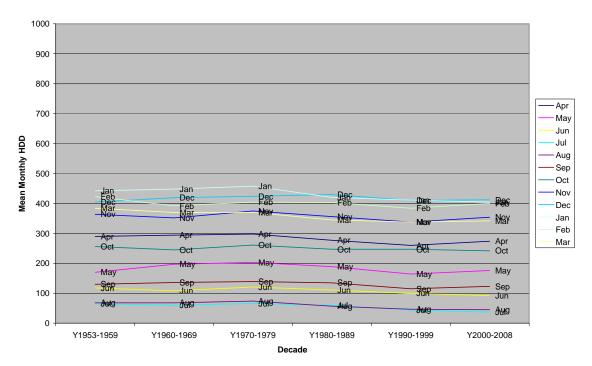
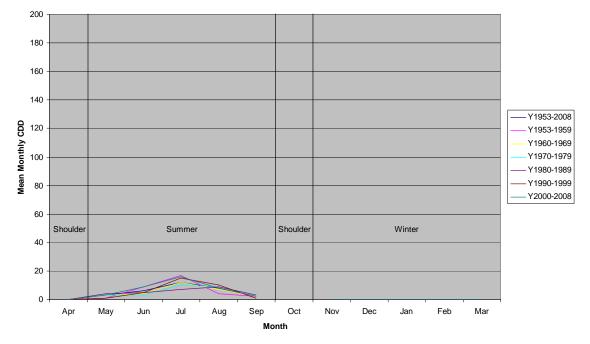

Figure 7: Vancouver Airport mean monthly CDD through six decades. CDD trend summary is in Table 14.

Table 7							
Sur	nmary o	of Victo	ria Airp	ort Res	ults		
HDD)						
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr	282	290	294	298	277	260	274
May	184	170	197	203	189	164	176
Jun	108	118	108	121	111	100	92
Jul	55	65	60	66	60	44	37
Aug	60	68	68	74	57	47	45
Sep	130	130	136	139	135	115	123
Oct	250	256	245	261	247	247	242
Nov	356	364	352	375	356	338	354
Dec	418	405	419	424	430	410	412
Jan	431	442	448	458	420	411	405
Feb	400	423	392	405	403	384	400
Mar	357	384	370	370	345	338	342
	Shading den	otes month in	shoulder sea	ason			

Victoria Airport - Mean monthly HDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)

Figure 8: Victoria Airport mean monthly HDD for 1953–2008 and corresponding decades



Victoria Airport - Mean monthly HDD by decade

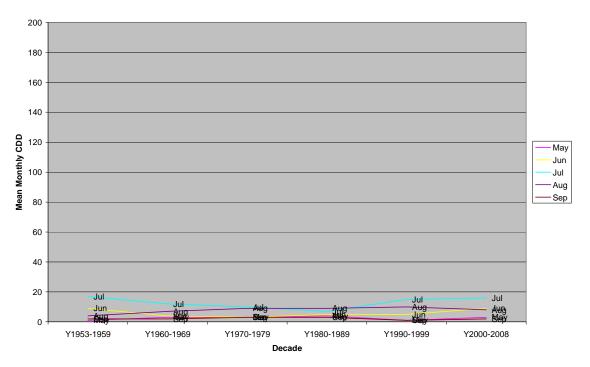
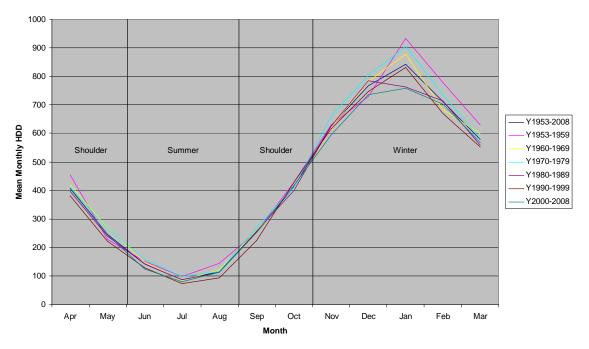

Figure 9: Victoria Airport mean monthly HDD through six decades. HDD trend summary is in Table 13.

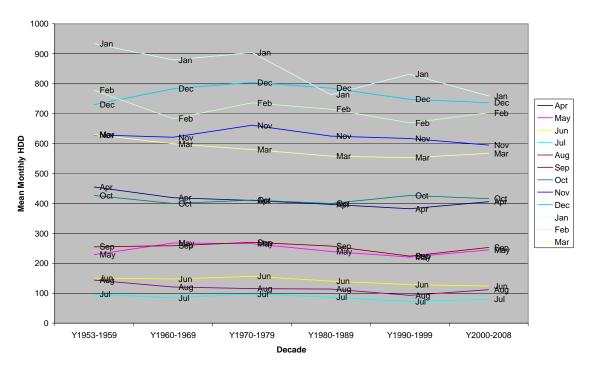
Table 8							
Sur	nmary o	of Victo	ria Airp	ort Res	ults		
CDD)						
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr	0	0	0	0	0	0	0
May	3	1	3	3	4	1	3
Jun	6	9	4	3	5	5	9
Jul	12	17	12	10	7	15	16
Aug	8	4	7	9	9	10	8
Sep	2	2	2	3	3	1	2
Oct							
Nov	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0
Jan	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0
	Shading den	otes month ir	shoulder sea	ason			

Victoria Airport - Mean monthly CDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)



Victoria Airport - Mean monthly CDD by decade

Figure 11: Vancouver Airport mean monthly CDD through six decades. CDD trend summary is in Table 14.


Sum	mary of	Prince	Georae	e Airpor	t Resul	ts	
HDD							
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr	409	455	419	410	397	382	406
May	246	229	268	266	240	221	245
Jun	142	151	148	157	141	129	124
Jul	86	97	85	98	87	73	80
Aug	115	144	121	116	114	93	112
Sep	253	255	259	270	258	224	253
Oct	413	427	400	411	400	427	416
Nov	625	629	621	661	625	617	595
Dec	767	730	783	804	785	748	737
Jan	842	934	879	904	763	832	759
Feb	711	778	683	736	715	669	702
Mar	579	630	599	580	558	553	567
	Shading den	otes month ir	n shoulder sea	ason			

- - - -

Prince George Airport - Mean monthly HDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)

Figure 12: Prince George Airport mean monthly HDD for 1953–2008 and corresponding decades

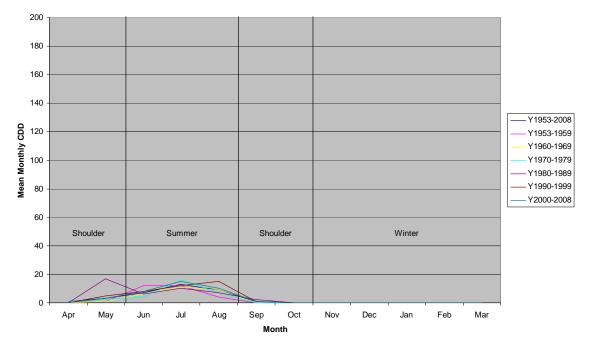
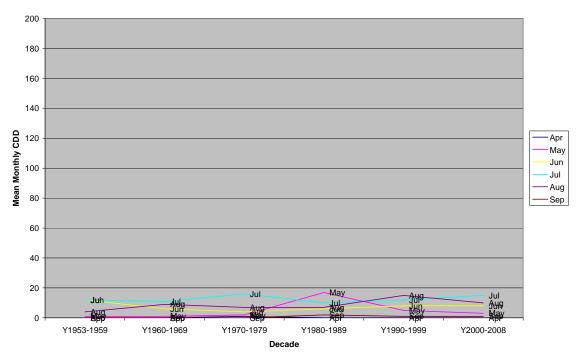
Prince George Airport - Mean monthly HDD by decade

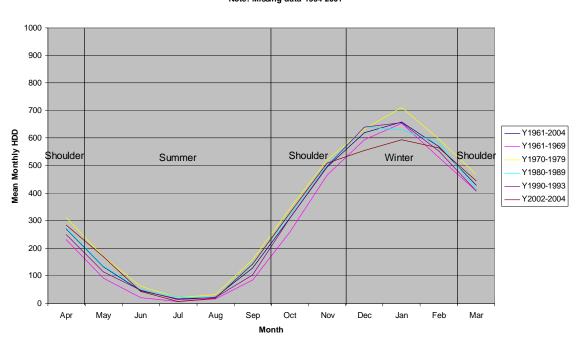
Figure 13: Prince George Airport mean monthly HDD through six decades. HDD trend summary is in Table 13

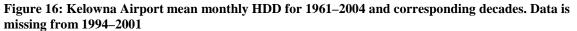
Table 10							
Sumr	mary of	Prince	George	e Airpor	t Resul	ts	
CDD							
Month	Y1953-2008	Y1953-1959	Y1960-1969	Y1970-1979	Y1980-1989	Y1990-1999	Y2000-2008
Apr	1	0	0	1	0	0	0
May	3	1	1	2	17	5	3
Jun	7	12	6	4	6	8	8
Jul	13	12	11	16	10	12	15
Aug	9	4	9	7	7	15	10
Sep	1	0	0	0	2	1	1
Oct	0	0	0	0	0	0	0
Nov	0	0	0	0	0	0	0
Dec	0	0	0	0	0	0	0
Jan	0	0	0	0	0	0	0
Feb	0	0	0	0	0	0	0
Mar	0	0	0	0	0	0	0
	Shading den	otes month ir	n shoulder sea	ason			

Table 10

Prince George Airport - Mean monthly CDD for 56-year period 1953-2008 and corresponding decades (BC Hydro fiscal year)


Figure 14: Prince George Airport mean monthly CDD for 1953–2008 and corresponding decades


Prince George Airport - Mean Monthly CDD by decade

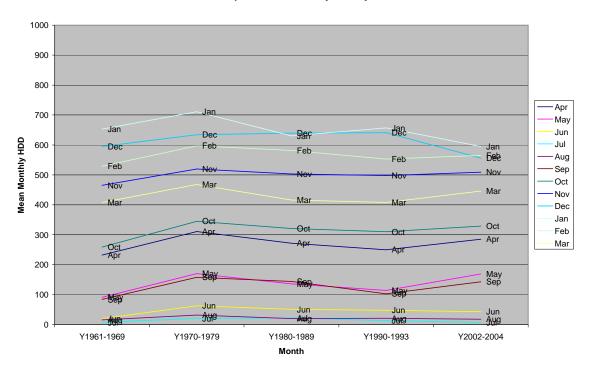

Figure 15: Prince George Airport mean monthly CDD through six decades. CDD trend summary is in Table 14

Table 11						
Sum						
HDD						
Month	Y1961-2004	Y1961-1969	Y1970-1979	Y1980-1989	Y1990-1993	Y2002-2004
Apr	271	232	311	272	250	285
May	134	91	170	136	114	169
Jun	46	20	63	51	48	43
Jul	16	7	21	22	13	7
Aug	23	16	32	20	21	18
Sep	128	84	158	144	103	143
Oct	310	259	345	321	310	329
Nov	496	465	520	503	498	509
Dec	619	595	634	639	641	556
Jan	658	653	711	630	657	595
Feb	568	529	597	582	553	565
Mar	430	408	468	416	408	446
	Shading den	otes month ir	n shoulder sea	ason		

Kelowna Airport - Mean monthly HDD for period 1961-2004 and corresponding decades (BC Hydro fiscal year) Note: Missing data 1994-2001



Kelowna Airport - Mean monthly HDD by decade

Figure 17: Kelowna Airport mean monthly HDD through five decades

Sum	mary of	Kelowr	na Airpo	ort Resu	ults									
CDD														
Month	Y1961-2004	Y1961-1969	Y1970-1979	Y1980-1989	Y1990-1993	Y2002-2004								
Apr	2	2	0	0	0	0								
May	14	24	4	9	22	1								
Jun	52	92	28	44	45	45								
Jul	102	157	78	82	82	109								
Aug	84	132	62	62	91	70								
Sep	13	30	2	9	8	7								
Oct	1	1	0	0	0	0								
Nov	0	0	0	0	0	0								
Dec	0	0	0	0	0	0								
Jan	0	0	0	0	0	0								
Feb	0	0	0	0	0	0								
Mar	0	0	0	0	0	0								
	Shading den	otes month ir	n shoulder sea	ason	Shading denotes month in shoulder season									

Table 12

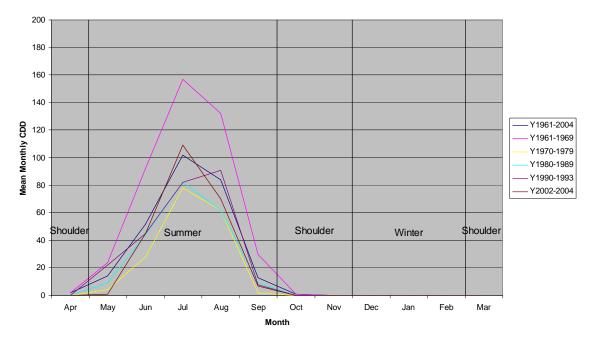
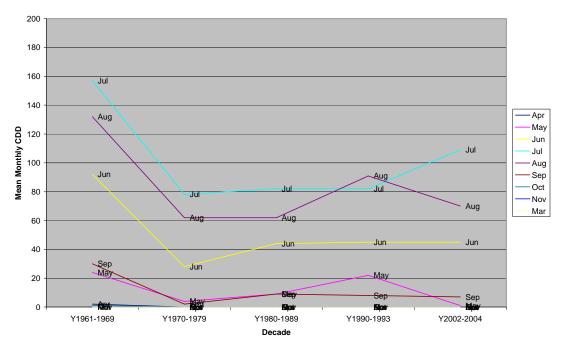



Figure 18: Kelowna Airport mean monthly CDD for 1961–2004 and corresponding decades. Data is missing from 1994–2001

Kelowna Airport - Mean monthly CDD by decade

Figure 19: Kelowna Airport mean monthly CDD through five decades

Results of analyses of heating and cooling degree day relationships between Vancouver and other BC stations

For practical reasons, related to the structure of BC Hydro's rate class and site type data sets, the Vancouver Airport station weather data is used often as a proxy for weather throughout the rest of BC. This was the case for weather sensitivity analyses. Therefore, it was of interest to examine the relationships between monthly HDD/CDD in Victoria, Kelowna, and Prince George to monthly HDD/CDD in Vancouver.

Heating degree days

Simple regression and polynomial (order = 2) regression tested monthly HDD relationships between Vancouver and the three other stations (Figures 20–23). The relationships were significant at the 95% level, supporting the practice of using, when necessary, Vancouver HDD data as a proxy for HDD in the rest of BC.

Figure 20 shows that Vancouver monthly HDDs are excellent proxies for Victoria HDDs. Loads in Lower Mainland and Vancouver Island can be treated as being from a single region for season definition purposes — together, these two regions comprise 70% of the BC Hydro system total load, 85% of the BC Hydro distribution grid total energy delivered to residential electrically heated buildings, and 84% of the BC Hydro distribution grid total electrical demand of these buildings (Wahlgren, 2009). Where the HDD correlation is weaker, as for Kelowna (Figure 22), the system load proportion affected is small, reducing the influence of the weaker correlation on the analyses.

HDD Victoria vs HDD Vancouver (1953-2008)

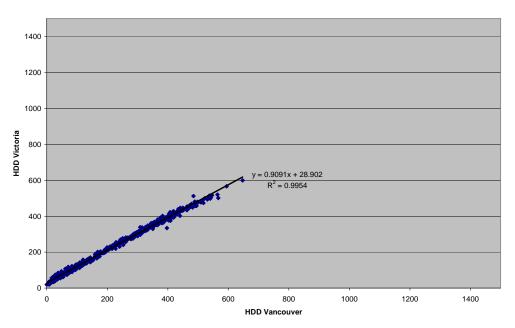


Figure 20: Regression line for monthly HDD values in Victoria against HDD in Vancouver. Regression coefficient (0.9091) suggests that in a given month, Victoria experiences 10% less HDDs than Vancouver. For 56 years of observations, there were 672 monthly mean HDD values. The relationship is significant at the 95% level

HDD Prince George vs HDD Vancouver (1953-2008)

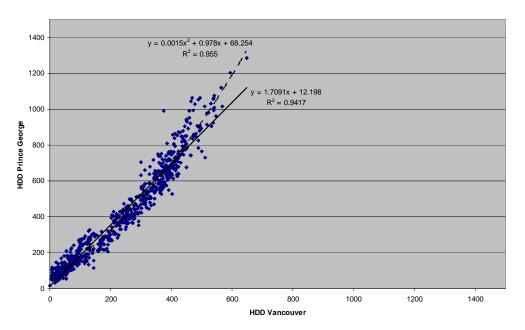


Figure 21: Regression lines between HDD values in Prince George against HDD in Vancouver. The linear regression coefficient suggests that in a given month, Prince George experiences 1.7 times more HDDs than Vancouver. For 56 years of observations, there were 672 monthly mean HDD values. Both relationships were significant at the 95% level. The polynomial of order 2 is a better fit than the linear regression and better represents the physical reality that Prince George, being more northerly and continental than Vancouver, experiences colder winters than Vancouver

HDD Kelowna vs HDD Vancouver (during July 1985-November 1993)

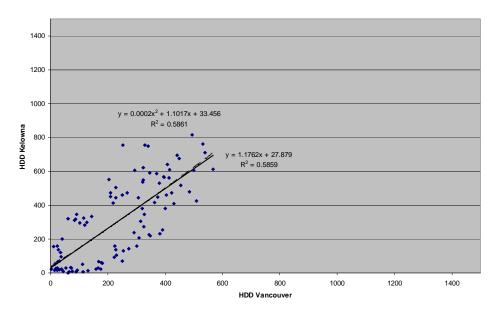
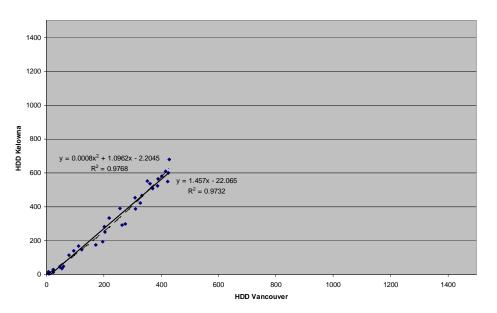
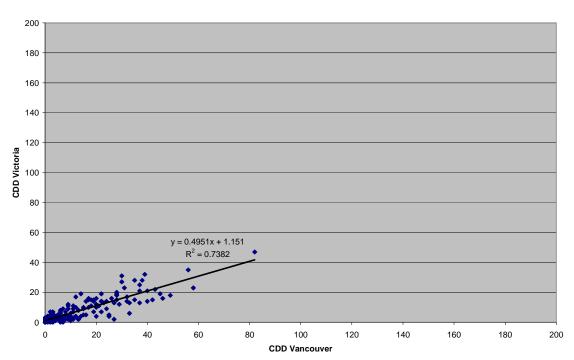



Figure 22: Regression lines between HDD values in Kelowna against HDD in Vancouver for July 1985 to November 1993. The linear regression coefficient suggests that in a given month Kelowna experiences 1.2 times more HDDs than Vancouver. For 101 months of observations, there were 101 monthly mean HDD values. Both relationships were significant at the 95% level. The polynomial of order 2 is a better fit than the linear regression representing the physical reality that Kelowna, being more northerly and continental than Vancouver, experiences colder winters than Vancouver



HDD Kelowna vs HDD Vancouver (during 2002-2004)

Figure 23: Regression between HDD values in Kelowna against HDD in Vancouver for 2002 to 2004. The linear regression coefficient suggests that in a given month Kelowna experiences 1.5 times more HDDs than Vancouver. For 36 months of observations, there were 36 monthly mean HDD values. Both relationships were significant at the 95% level. The polynomial of order 2 is a better fit than the linear regression representing the physical reality that Kelowna, being more northerly and continental than Vancouver, experiences colder winters than Vancouver

Cooling degree days

Simple regression was used to test the monthly CDD relationships between Vancouver and the three other stations (Figures 24–26). The relationships were significant at the 95% level in all cases, supporting the practice of using, when necessary, Vancouver monthly CDD data as a proxy for CDDs in the rest of BC.

CDD Victoria vs CDD Vancouver (1953-2008)

Figure 24: Regression line for the relationship between monthly CDD values in Victoria against CDD in Vancouver. The linear regression coefficient suggests that CDDs in Victoria will be 50% of Vancouver's CDDs in a given month. There were 177 pairs of observations. The relationship is significant at the 95% level

CDD Prince George vs CDD Vancouver (1953-2008)

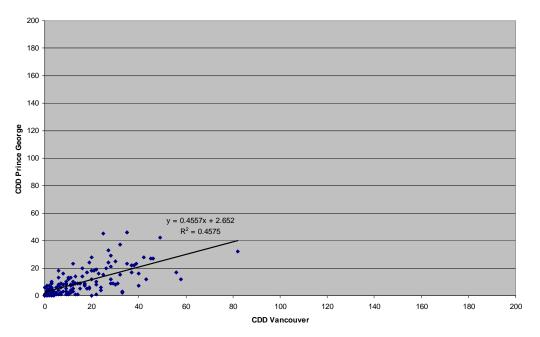


Figure 25: Regression line for the relationship between CDD values in Prince George against CDD in Vancouver. The linear regression coefficient suggests that CDDs in Prince George will be 46% of Vancouver's CDDs in a given month. There were 164 pairs of observations. The relationship is significant at the 95% level

CDD Kelowna vs CDD Vancouver

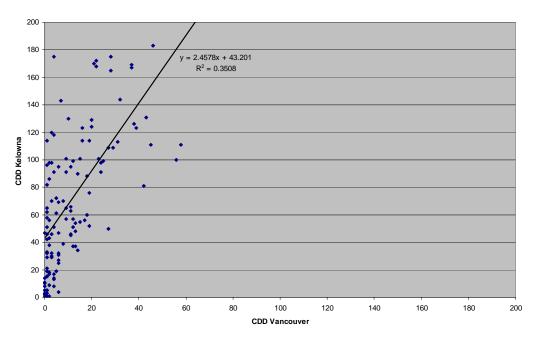


Figure 26: Regression line for the relationship between CDD values in Kelowna against CDD in Vancouver. The linear regression coefficient suggests that CDDs in Kelowna will be 2.5 times Vancouver's CDD's for a given month. There were 173 pairs of observations. The relationship is significant at the 95% level

Results of analyses of temporal stability of HDD and CDD regimes

The charts showing mean monthly HDD/CDD against decades revealed patterns quantitatively indicative of trends. This led to a quantitative consideration of various climate indices that have been applied to BC's climate, primarily by fisheries researchers. Some of the climate indices showed statistically significant correlations with Vancouver HDD data. By extension, as demonstrated in the analyses of HDD/CDD correlations in the section above, these correlations will apply to stations in the rest of BC.

Trends

In the Lower Mainland, HDDs decreased for Apr, Jun, Jul, Aug, Sep, Jan, and Mar (Table 13) while Aug CDD increased (Table 14) during 1953–2009. Taken together, these two trends over 57 years suggested the Vancouver Airport station (and the rest of BC) was experiencing a warming climate. HDD and CDD were not stable over time and will affect, in the long-term, the allocation of months to seasons for BC sites.

Table 13: Decreasing HDDs in Jan, Mar and Apr were likely to have most effect on consumption of electricity by electric heaters. Lack of trends in Kamloops data may be a result of short observation period (16 years) compared to other three regions (57 years). *Decreasing HDDs were consistent with observed global climate change warming temperature trends*. Table is from Wahlgren (2010)

Month/Station	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Lower Mainland: Vancouver 1953-2009	•		▼	•	•	▼	-	-	-	•		•
Vancouver Island: Victoria 1953-2009	•	-	•	•	•	-	-	-	-	•	-	•
Northern Region: Prince George 1953-2009	•	-	•	-	•	-	-	-	-	►	-	
South Interlor: Kamicops 1994-2009												

Decreasing HDD significant at 0.05 level

Trend in HDD not significant at 0.05 level

Table 14: Increasing CDDs in May through Sep were likely to have the most effect on consumption of electricity by cooling systems. *Increasing CDDs were consistent with observed global climate change warming temperature trends.* The table is from Wahlgren (2010)

Month/Station	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar
Lower Mainland: Vancouver 1953-2009		_	-	-	<u> </u>	-						
Vancouver Island: Victoria 1953-2009			-	-	-	-						
Northern Region: Prince George 1953-2009			-	-	-	-						
South Interior: Kamico ps 1994-2009			-	-	-	-						

Cycles

Spectral analyses of the monthly HDD (Vancouver) signals revealed periodicities varying from 2 to about 11 years (Figure 27). The latter is related to the Sun's 11-year sunspot cycle. Longer periods were not observed in the 57 years of observations available for this project. The literature does however mention, for example, the Pacific Decadal Oscillation cycle of 50 to 60 years (BC, 2002). Periodicities stem from primary global, secondary global, and continental-scale climate processes as depicted in Figure 28.

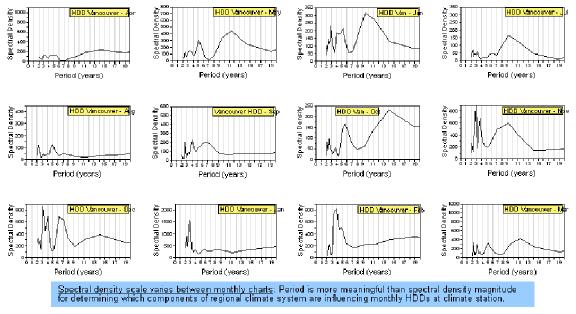


Figure 27: HDD cycle detection by spectral analyses (monthly)—Vancouver HDD example. Figure is from Wahlgren (2010)

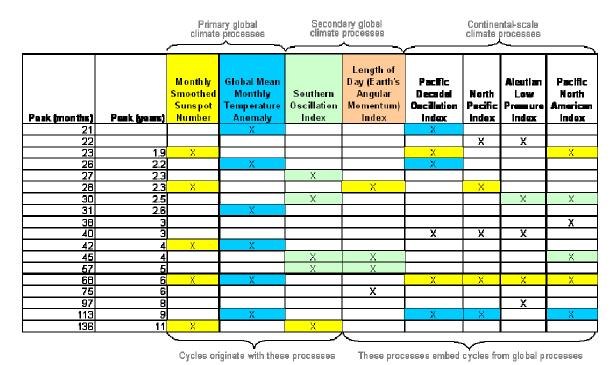


Figure 28: Spectral analyses revealing periodicities of various climate index signals were used to produce this compendium of climate indices representing various climate processes influencing the regional climates of British Columbia. Figure is from Wahlgren (2010)

Mean monthly HDD and CDD were not stable even in the short term and varied in amplitude from high to low during the course of one or two decades (as seen in Figures 4, 5, 7, 9, 11, 13, 15, 17, and 19. This will affect the allocation of months to seasons as was observed in the analyses with the phenomenon of shoulder months May and September switching in and out of the summer season and November switching from the winter. Table 15 indicates this instability during 1960–1989. Coincidentally, "...a significant inter-decadal climate regime shift occurred in 1976/77 in association with a deepening of the Aleutian low...and changes in the physical and biological environments over the North Pacific and North America..." (Minobe, 1997)

Station	1953–1959	1960–1969	1970–1979 (climate regime shift 1976/77, see text)	1980–1989	1990–1999	2000–2008
Vancouver		May				
Victoria		May				
Prince George		May/Sep	May/Sep			
Kelowna			Mar/Nov	Mar/Nov		

Table 15: Months that became shoulder months by decade 1953–2008. Information is from Appendix Tables A-2-3, A-2-10, A-2-17, A-2-18, and A-2-24.

Overall temporal stability

With significant trends, cycles, and even climate regime shifts affecting HDD and CDD at Vancouver Airport, the allocation of months to seasons is an analytical convenience that must be reviewed periodically to ensure meaningful results from various analyses that depend on the naming of seasons.

Results of sensitivity analyses of Vancouver's HDD to changes in the NE Pacific Ocean climate regime

The essential point has been made in the previous section that HDD and CDD regimes are not necessarily stable through time. Fluctuations in HDD and CDD ought to be recognized in weather sensitivity analyses and factored into load demand analyses. Here is a brief exploration of the sensitivity of Vancouver's HDD to changes in the NE Pacific Ocean climate regime.

Five climate indices relevant to BC are:

- Southern Oscillation Index
- Pacific Decadal Oscillation Index
- North Pacific Index
- Aleutian Low Pressure Index
- Pacific North American Index

An in-depth consideration of the climate indices is beyond the scope of this document but a brief review in the context of understanding HDD/CDD temporal stability—and therefore seasonal stability—is presented in this section.

A more detailed examination of these and other climate indices for degree-day forecasting was presented in Wahlgren (2010).

Southern Oscillation Index

The Southern Oscillation Index (SOI) is calculated by dividing the difference in pressure anomalies at Tahiti and Darwin by the standard deviation of the difference and multiplying by a factor of ten (Queensland Government, 2009):

$$SOI = \frac{PA(Tahiti) - PA(Darwin)}{Std _Dev _Diff} \times 10$$

During the data set period of 1953–2008, the Southern Oscillation Index (SOI) fluctuated considerably as shown in Figure 29. Regression analysis failed to detect a significant relationship between Vancouver's HDD and the SOI (Figure 30).

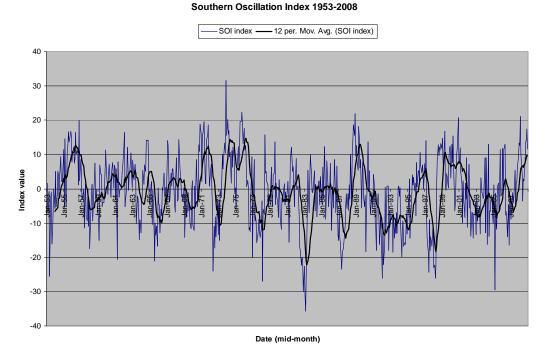
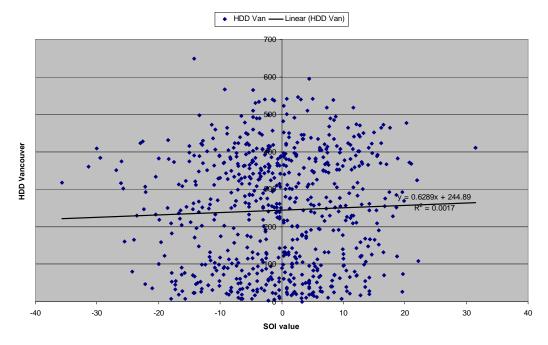



Figure 29: Southern Oscillation Index 1953–2008 charted from monthly values. The 12 month moving average is superimposed. Data is from Queensland Government (2009)

HDD Vancouver vs Southern Oscillation Index 1953-2008

Figure 30: The linear regression for the relationship between HDD Vancouver and SOI was not statistically significant [did not reject the null hypothesis that the slope of the line was zero (n=672; coefficient of correlation R = 0.04; 95% level of significance)]

Pacific Decadal Oscillation Index

The Pacific Decadal Oscillation (PDO) Index is based on analyses of North Pacific sea surface temperatures (SSTs). Mantua and others (1997) referred to, "...the time history of the leading eigenvector of North Pacific SST as an index for the state of the PDO." The PDO Index document (JISAO, 2009) explained the index values as:

Updated standardized values for the PDO index, derived as the leading PC [principal component] of monthly SST anomalies in the North Pacific Ocean, poleward of 20N. The monthly mean global average SST anomalies are removed to separate this pattern of variability from any "global warming" signal that may be present in the data.

During the data set period of 1953–2008, the PDO Index fluctuated considerably as shown in Figure 31. Regression analysis detected a significant relationship between Vancouver's HDD and the PDO Index (Figure 32).

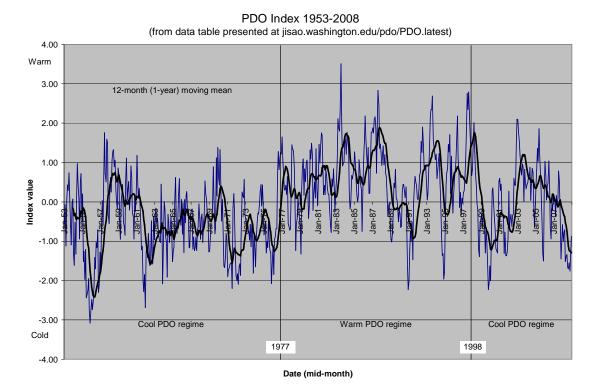
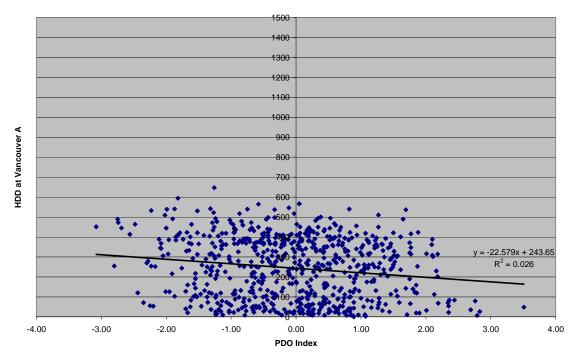



Figure 31: Pacific Decadal Oscillation Index monthly values from 1953–2008. The 12-month running mean is superimposed. Data is from JISAO (2009) the Joint Institute for the Study of the Atmosphere and Ocean (University of Washington and the National Oceanic and Atmospheric Administration, USA)

HDD Vancouver vs PDO Index

Figure 32: The linear regression for the relationship between HDD Vancouver and PDO Index was statistically significant [rejected the null hypothesis that the slope of the line was zero (n=672; coefficient of correlation R = 0.16; 95% level of significance)]

North Pacific Index

The Aleutian Low (Figure 33) is revealed on mean pressure maps and represents frequent passage of deep depressions (low pressure systems) across the North Pacific (Petterssen, 1969, p. 191). The physical mechanism explaining the relationship between sea level pressure (SLP) and air temperatures across British Columbia is given concisely by Minobe (1997, p. 683):

The relation between the SLP and air-temperature is a consequence of the strengthened (weakened) Aleutian low enhancing (reducing) the advection of warmer air onto the west cost (*sic*) of North America..."

The North Pacific (NP) Index, "...is the area-weighted sea level pressure over the region 30N–65N, 160E–140W, available since 1899" (Hurrell, 2009). During the data set period of 1953–2008, the NP Index fluctuated considerably as shown in Figure 34.

Regression analysis detected a significant relationship between Vancouver's HDD and the NP Index (Figure 35).

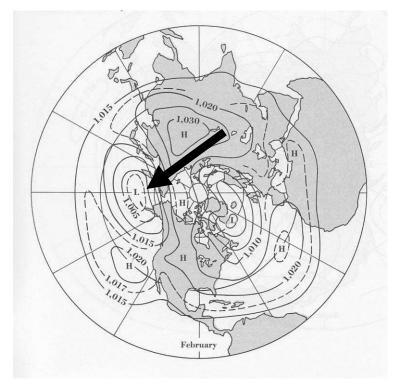


Figure 33: Mean surface pressure (mb) distribution in Northern Hemisphere winter showing mean position of Aleutian Low (arrow). Map is from Petterssen (1969, p. 191)

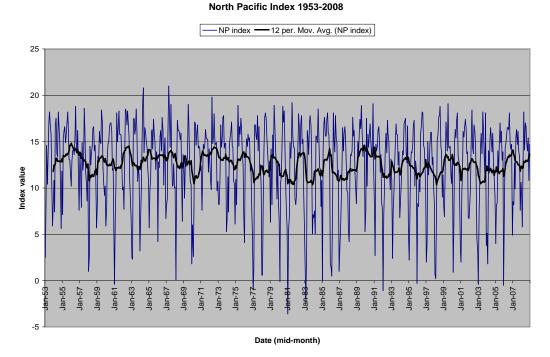
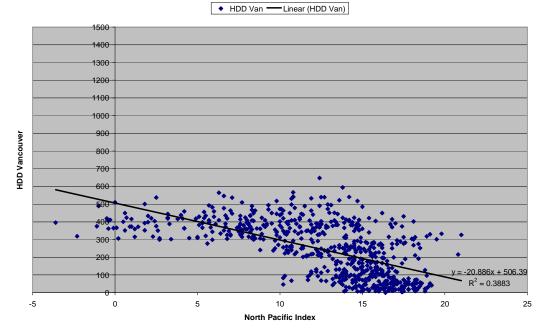



Figure 34: North Pacific Index monthly values from 1953–2008. The 12-month running mean is superimposed. NP Index data provided by the Climate Analysis Section, NCAR, Boulder, USA, Trenberth and Hurrell (1994)

HDD Vancouver vs North Pacific Index

Figure 35: The linear regression for the relationship between HDD Vancouver and NP Index was significant [rejected the null hypothesis that the slope of the line was zero (n=672; coefficient of correlation R = 0.62; 95% level of significance)]

Aleutian Low Pressure Index

The Aleutian Low Pressure Index (ALPI), "...measures the relative intensity of the Aleutian Low pressure system of the north Pacific (December through March). It is calculated as the mean area (km²) with sea level pressure ≤ 100.5 kPa and expressed as an anomaly from the 1950-1997 mean. A positive index value reflects a relatively strong, or intense Aleutian Low" (Beamish and others, 1997). The winter position of the Aleutian Low is shown in Figure 33. The annual fluctuations of the ALPI are presented in Figure 36.

Regression analysis detected a significant relationship between Vancouver's HDD and the NP Index (Figure 37).

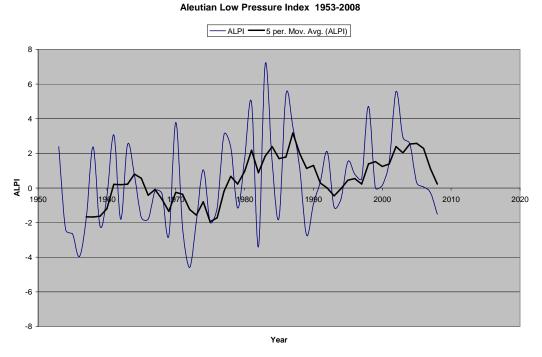
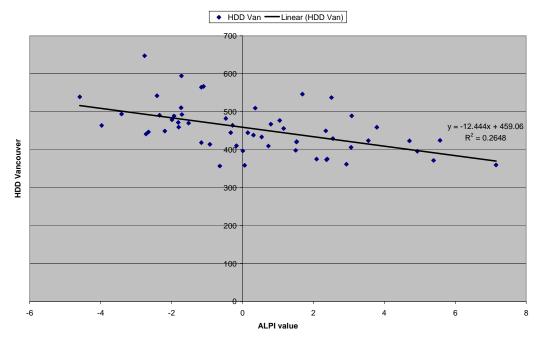



Figure 36: Aleutian Low Pressure Index annual values from 1953–2008. The 5-year running mean is superimposed. Data is from Fisheries and Oceans Canada-Pacific Region (2009)

HDD Vancouver vs Aleutian Low Pressure Index

Figure 37: The linear regression for the relationship between HDD Vancouver and ALPI was significant [rejected the null hypothesis that the slope of the line was zero (n=672; coefficient of correlation R = 0.51; 95% level of significance)]

Pacific North American Index

The Pacific North American Index (PNAI, Figures 38 and 39) represents intensities of four major pressure cells surrounding North America (and BC). Intensities and geographical distribution of cells influences air temperature (therefore H-CDD) in BC.

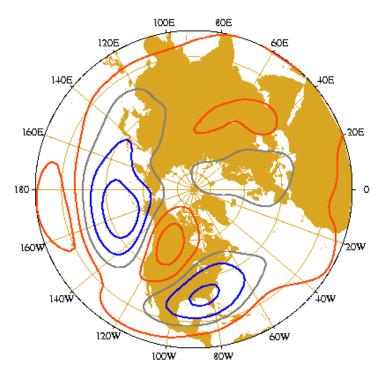


Figure 38: The Pacific North American Index represents intensities of four major pressure cells surrounding BC. Source for graphic: Joint Institute for the Study of the Atmosphere and Ocean; <u>http://jisao.washington.edu/data_sets/pna/</u>

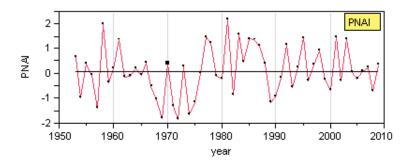


Figure 39: The Pacific North American Index has positive and negative phases. Chart is from Wahlgren (2010)

Important points about the Pacific North American Index (based on Data Set Summary by NASA Goddard Space Flight Center, Global Change Master Directory; see Figure 40) included:

- PNA pattern coverage of Earth's surface is greatest in winter
- Aleutian Low contracts in Spring to Gulf of Alaska
- Subtropical low near Hawaii strongest in Spring
- PNA pattern weakest in June/July
- PNA pattern strengthens during late summer/fall

Additional information (from NOAA National Weather Service, Climate Prediction Center) included these points:

- PNA pattern is believed to be natural climate variability
- PNA is linked to El Niño / Southern Oscillation
- PNA positive phase → Pacific warm episodes (El Niño) → BC experiences above-average temperatures
- PNA negative phase \rightarrow Pacific cold episodes (La Niña)
- PNA has minimal impact on BC's surface temperature variability in summer

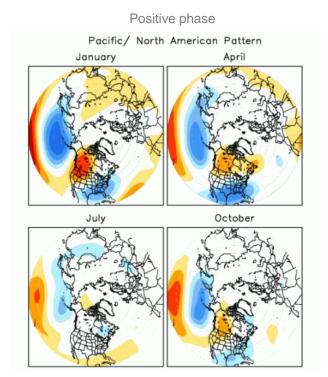


Figure 40: The seasonal views of the four low pressure cells surrounding and overlying BC. Source: NOAA National Weather Service Climate Prediction Center; http://www.cpc.ncep.noaa.gov/data/teledoc/pna_map.shtml Vancouver's HDDs showed a statistically significant relationship to the Pacific North American Index. The relationship for all 678 observations from 1953 to 2009 is shown in Figure 41.

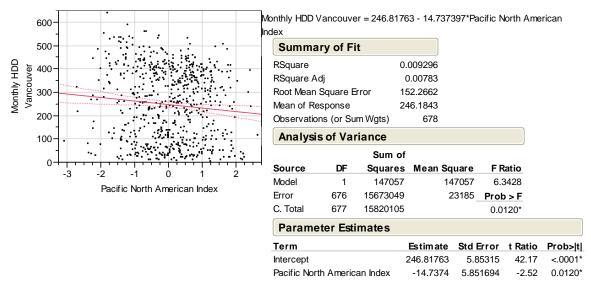
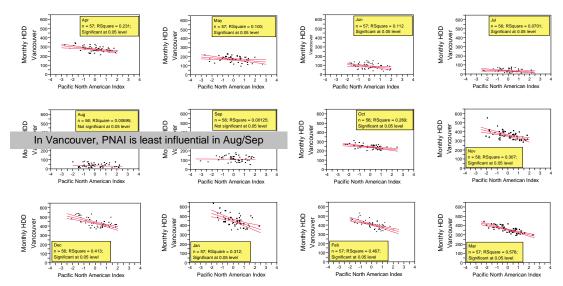



Figure 41: JMP software output showing statistically significant relationship (0.05 level) between Monthly HDD in Vancouver and PNAI (data from Jan 1953 to Jun 2009)

The monthly relationships were stronger (Figure 42).

Significant months: all except Aug and Sep. Charts show 0.05 confidence limits about the significant regression lines

Figure 42: JMP software output showing statistically significant relationships (0.05 level) by month between Monthly HDD in Vancouver and PNAI (data from Jan1953 to Jun 2009). With 56 or 57 observations for monthly HDDs, RSquare was as follows: Apr (0.231), May (0.100), Jun (0.112), Jul (0.0701), Aug (0.00695; not significant), Sep (0.00125; not significant), Oct (0.269), Nov (0.307), Dec (0.413), Jan (0.312), Feb (0.467), and Mar (0.578). Original figure appeared in Wahlgren (2010)

Strength of HDD relationships to indices

Rodionov and others (2005) pointed out that the relatively low coefficients of correlation between North Pacific climate variables and the indices are because the indices measure the intensity of the Aleutian Low, not its geographical position. The position of the Low also affects the climate of the NE Pacific region.

An overview of strength of fit between Vancouver HDDs and climate indices by month is provided in Table 16. Four of these indices (Mean Smoothed Sunspot Number, Global Mean Monthly Temperature Anomaly, Southern Oscillation Index, and Length of Day Index have global influence, not restricted to the North Pacific.

Table 16: Climate indexes are Mean Smoothed Sunspot Number (MSSN), Global Mean Monthly Temperature Anomaly (GMMTA), Southern Oscillation Index (SOI), Length of Day Index (LODI), Pacific Decadal Oscillation (PDO), North Pacific Index (NPI), Aleutian Low Pressure Index (ALPI), and Pacific North American Index (PNAI). LODI is a measure (units of ms) related to Earth's angular momentum, indexing major storm activity in the Earth's climate system. These storms are usually related to El Niño events which affect sea surface temperatures offshore BC, hence land air temperature and degree-days across BC. This table appeared in Wahlgren (2010). Highlighted cells are a guide to the best monthly fits given by ANOVA Prob > F. The lower the value, the better the fit.

Strength of fit between HDD Vancouver and climate indices by month

HDD da	ata for 1	953-20	09							
				ANOVA	Prob > F					
Month	MSSN	GMMTA	SOI	LODI	PDO	NPI	ALPI	PNAI		
Apr	0.2364	0.0003	0.027	0.0768	0.0001	0.0001	0.0407	0.0002		
May	0.2175	0.083	0.0138	0.162	0.0002	0.0001	0.5862	0.0165		
Jun	0.3675	0.0338	0.0127	0.0856	0.003	0.1437	0.0523	0.0108		
Jul	0.5708	0.0017	0.8259	0.0055	0.164	0.1291	0.3396	0.0486		
Aug	0.9341	0.0001	0.0456	0.0009	0.047	0.022	0.0011	0.5412		
Sep	0.6987	0.0099	0.16	0.1705	0.0881	0.0001	0.4403	0.7963		
Oct	0.547	0.0251	0.2499	0.0568	0.2143	0.0027	0.1751	0.0001		
Nov	0.9692	0.0205	0.8835	0.551	0.0479	0.0015	0.0472	0.0001		
Dec	0.2038	0.106	0.1632	0.2203	0.0563	0.0001	0.7625	0.0001		
Jan	0.4936	0.0006	0.5112	0.0529	0.0002	0.0001	0.0001	0.0001		
Feb	0.5609	0.0049	0.1296	0.8037	0.0004	0.0001	0.0001	0.0001		
Mar	0.5594	0.0002	0.0001	0.7747	0.0001	0.0001	0.0001	0.0001		
loto: Docio	ion for which	h of tigd volu		as made h	v choosing f	it with higho	st R ² (bolde	d colle)		

Note: Decision for which of tied values to use was made by choosing fit with highest R² (bolded cells)

Conclusions

Using HDD and CDD as weather proxies, winter months, without exception spatially or temporally, were delineated clearly as comprising November–March. Summer months always contained June, July, and August. Some stations and some decades included May or September into the summer season. Coincidentally, May and/or September shifted in or out of membership in the shoulder season. The shoulder season always included April and October. A compromise, suitable for any location in BC, was to include April, May, September, and October in the shoulder season. March, which had been classified previously as a shoulder season month (Andrew Berrisford, BC Hydro, personal communication) was shown to be exclusively a winter month in British Columbia.

Months can be grouped into three seasons appropriate for weather sensitivity analyses in British Columbia. Winter weather sensitivity can be gauged using data from the months

November–March. Summer weather sensitivity can be gauged using data from the months June, July, and August. Shoulder season analyses should reference April, May, September, and October.

Climate variability (cyclical related to, for example, the Pacific Decadal Oscillation) or change (trend) may affect the membership of months in the shoulder season at a specific site over time or for spatially distributed sites. The climate cycles observed in the analyses have periods ranging up to 11 years. Longer cycles of 50 to 60 years are known to affect BC's climate. The observed climate trend shows warming, evidenced by months with decreasing HDD and increasing CDD, during the past 55 years.

Cycles and trends in HDD and CDD ought to be recognized and accounted for in weather sensitivity analyses, classification of seasons and should be factored into load demand analyses. Quantitative knowledge of these cycles and trends has predictive benefits for load analysis.

References

Beamish, R.J.; Neville, C.E. and Cass, A.J. (1997) Production of Fraser River sockeye salmon (*Oncorhynchus nerka*) in relation to decadal-scale changes in the climate and the ocean. *Can. J. Fish. Aquat. Sci.* 54: 543-554. (available at <u>http://article.pubs.nrc-cnrc.gc.ca/RPAS/rpv?hm=HInit&journal=cjfas&volume=54&calyLang=eng&afpf=f96-310.pdf</u>, August 19, 2009)

BC (2002). *Indicators of climate change for British Columbia*, 2002. British Columbia Ministry of Water, Land, and Air Protection. Victoria, BC. (available at <u>www.env.gov.bc.ca/air/climate/indicat/index.html</u>; July 23, 2009)

Fisheries and Oceans Canada-Pacific Region (2009) *Fisheries Climatology: Climate-Ocean Regime Indices—Aleutian Low Pressure Index (ALPI)* web page. (Available at <u>http://www.pac.dfo-mpo.gc.ca/sci/sa-mfpd/climate/clm_indx_alpi.htm</u>, with a link to a text file of data; August 19, 2009).

Hurrell, J. (2009) *North Pacific (NP) Index Reference Information*. Available at <u>http://www.cgc.ucar.edu/cas/jhurrell/npindex.html</u> (July 31, 2009)

JISAO (2009) *PDO Index*. Available at <u>http://jisao.washington.edu/pdo/PDO.latest</u> (July 31, 2009)

Mantua, N. J.; Hare, S. R.; Zhang, Y.; Wallace, J. M.; and Francis, R. C. (1997) A Pacific interdecadal climate oscillation with impacts on salmon production. *Bulletin of the American Meterological Society* (Preprint available at <u>http://www.iphc.washington.edu/Staff/hare/html/papers/pdo/PDO.pdf</u>, July 24, 2009)

MSC (2007) Canadian Weather Energy and Engineering Data Sets (CWEEDS Files) and Canadian Weather for Energy Calculations (CWEC Files): Updated User's Manual. Prepared under the direction of Environment Canada – Atmospheric Environment Service (AES) currently known as the Meteorological Service of Canada (MSC) and the National Research Council of Canada. Revised on August 28, 2007.

Minobe, S (1997) A 50–70 year climatic oscillation over the North Pacific and North America. *Geophysical Research Letters*, Vol. 24, No. 6, Pages 683–86.

Petterssen, S. (1969) Introduction to Meteorology, 3rd ed. McGraw Hill, Inc.

Queensland Government (2009) *SOI, SST, SOI Phases Seasonal Climate Outlook* web site (<u>http://www.longpaddock.qld.gov.au/SeasonalClimateOutlook/SouthernOscillationIndex/SOIDataFiles/ind</u> <u>ex.html</u>; July 31, 2009). Data set used by this document, Figures 26 and 27, was designated as "MonthlySOIPhase1887-1989Base"

Rodionov, S.N.; Overland, J.E.; and Bond, N.A. (2005) The Aleutian Low and Winter Climatic Conditions in the Bering Sea. Part 1: Classification. *Journal of Climate* **18**: 160–177. (Available at http://www.pmel.noaa.gov/foci/publications/2005/rodiG548.pdf, August 19, 2009).

Trenberth, K.E. and Hurrell, J.W. (1994) Decadal atmosphere-ocean variations in the Pacific. *Clim. Dyn.* **9**:303. (Data available at <u>http://www.cgd.ucar.edu/cas/jhurrell/indices.data.html#npmon</u>, August 19, 2009).

Wahlgren, R. V. (2009). SW BC Proportion of BC Hydro Grid Activity. BC Hydro Customer Information Management—Load Analysis, September 22, 2009. Available at http://bchx/library/ViewAttachment.asp?d=2762

Wahlgren, R. V. (2010). Heating/Cooling Degree Day Forecasts for BC Hydro Sales Regions Using a Probabilistic Model with Climate Inputs. BC Hydro Customer Information Management—Load Analysis, January 2010. Available at BCHX Library, Load Research section (link is pending)

Yu, Min. (2007). Typical Weather Based on Rank and Median Approach in BC Province. Business Systems Group, February 2007 (Available at <u>http://bchx/library/ViewAttachment.asp?d=2093</u>, June 1, 2009).

Appendix 1

Results from CWEC datasets

- Abbotsford
- Comox
- Fort St John
- Kamloops
- Port Hardy
- Prince George
- Prince Rupert
- Sandspit
- Smithers
- Summerland
- Vancouver
- Victoria

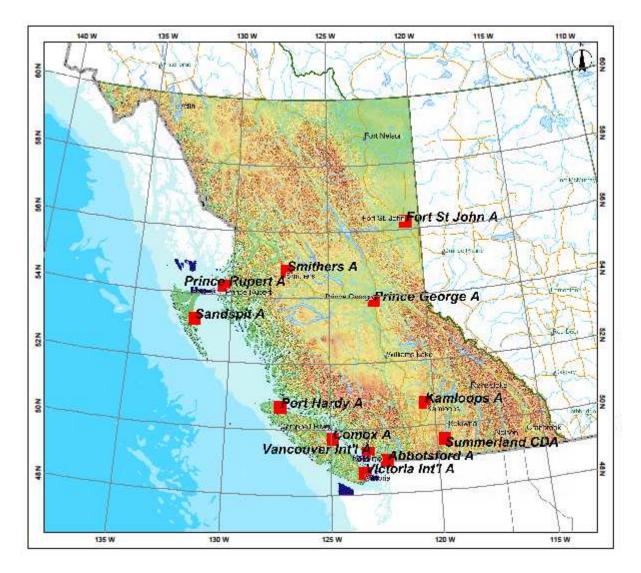


Figure A-1-1: CWEC Stations

Abbotsford Airport (CWEC)					
Month	HDD	CDD	Season		
April	287		Shoulder		
Мау	184	6	Summer		
June	109	0	Summer		
July	48	13	Summer		
August	42	14	Summer		
September	134		Summer		
October	243		Shoulder		
November	382		Winter		
December	449		Winter		
January	470		Winter		
February	396		Winter		
March	389		Winter		

Table A-1-1: Results from CWEC data set for Abbotsford

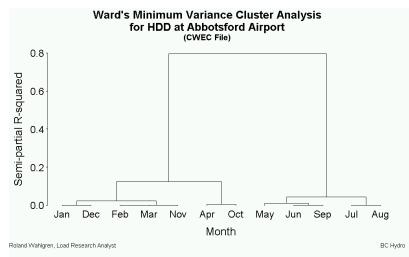


Figure A-1-2: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

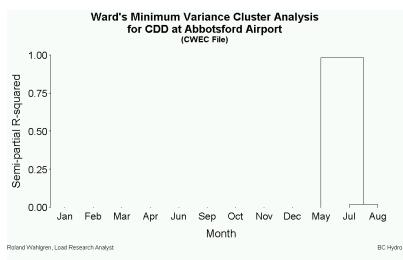


Figure A-1-3: Cooling degree days occur in May, July, and August

Comox Airport (CWEC)						
Month	HDD	CDD	Season			
April	283		Shoulder			
Мау	208		Shoulder			
June	111	2	Summer			
July	45	16	Summer			
August	34	11	Summer			
September	136		Summer			
October	272		Shoulder			
November	376		Winter			
December	456		Winter			
January	494		Winter			
February	377		Winter			
March	385		Winter			

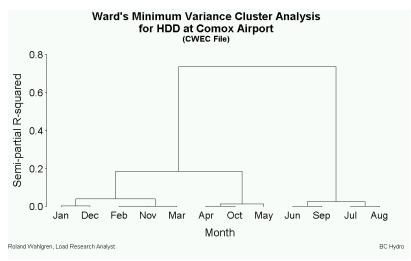


Figure A-1-4: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, May, October)

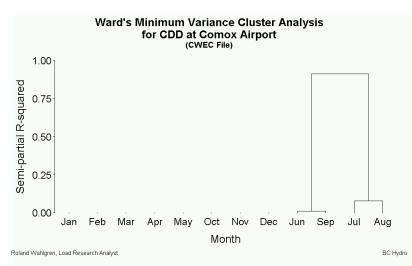
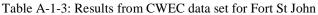



Figure A-1-5: Cooling degree days occur in June, July, August, and September

Fort St John Airport						
Month	HDD	CDD	Season			
April	418		Shoulder			
Мау	254		Shoulder			
June	125	6	Summer			
July	92	7	Summer			
August	118	12	Summer			
September	272		Shoulder			
October	428		Shoulder			
November	740		Winter			
December	910		Winter			
January	985		Winter			
February	807		Winter			
March	714		Winter			

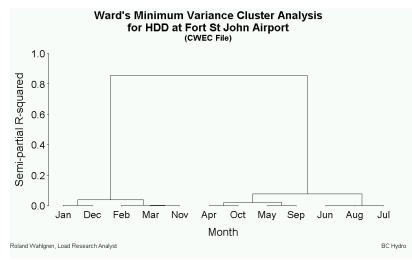


Figure A-1-6: Cluster analysis result: Summer months (June, July, August); Winter months (November, December, January, February, March); and Shoulder months (April, May, September, October)

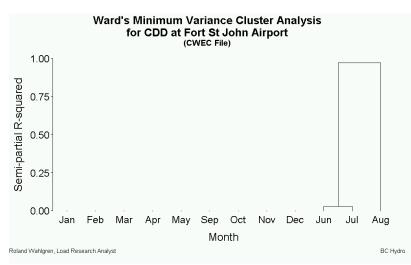
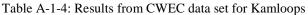



Figure A-1-7: Cooling degree days occur in June, July, and August

Kamloops Airport						
Month	HDD	CDD	Season			
April	263		Shoulder			
Мау	114	11	Summer			
June	41	55	Summer			
July	8	112	Summer			
August	15	86	Summer			
September	98	23	Summer			
October	309		Shoulder			
November	453		Winter			
December	663		Winter			
January	691		Winter			
February	536		Winter			
March	438		Winter			

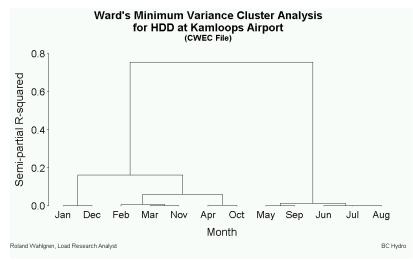


Figure A-1-8: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

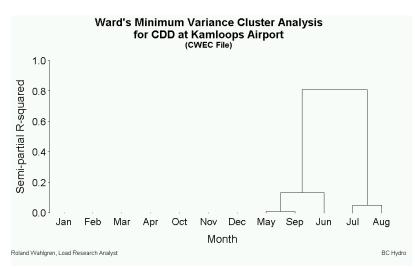


Figure A-1-9: Cooling degree days occur in May, June, July, August, and September

Port Hardy Airport						
Month	HDD	CDD	Season			
April	343		Winter			
Мау	263		Shoulder			
June	195		Summer			
July	145		Summer			
August	146		Summer			
September	203		Summer			
October	302		Shoulder			
November	377		Winter			
December	445		Winter			
January	481		Winter			
February	399		Winter			
March	415		Winter			

Table A 1 5	Doculto fr	om CWEC	data sat fo	or Port Hardy
1 able A-1-5.	Results In		uala sel IC	n ron naiuy

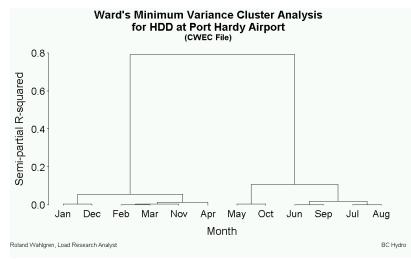


Figure A-1-10: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March, April); and Shoulder months (May, October)

Cooling degree days do not occur at Port Hardy Airport.

able A-1-6: Results from CWEC data set for Prince George
--

Prince George Airport					
Month	HDD	CDD	Season		
April	389		Winter		
Мау	243		Summer		
June	148	3	Summer		
July	113	4	Summer		
August	94	8	Summer		
September	215		Summer		
October	410		Winter		
November	612		Winter		
December	747		Winter		
January	892		Winter		
February	653		Winter		
March	554		Winter		

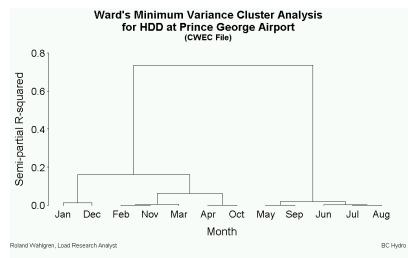


Figure A-1-11: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (October, November, December, January, February, March, April); and Shoulder months (none)

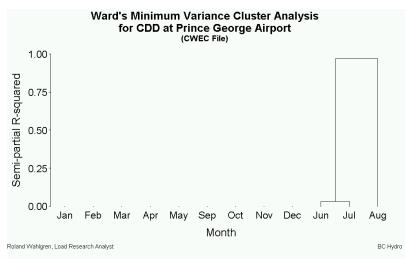


Figure A-1-12: Cooling degree days occur in June, July, and August

Prince Rupert Airport						
Month	HDD	CDD	Season			
April	370		Shoulder			
Мау	291		Shoulder			
June	220		Summer			
July	157		Summer			
August	145		Summer			
September	209		Summer			
October	314		Shoulder			
November	441		Winter			
December	517		Winter			
January	563		Winter			
February	464		Winter			
March	460		Winter			

Table A-1-7: Results from CWEC data set for Prince Rupert

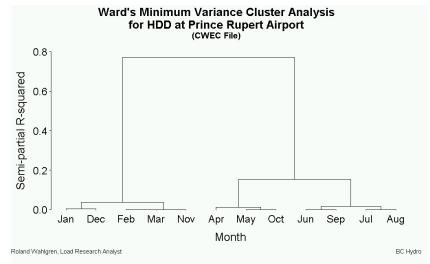


Figure A-1-13: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, May, October)

Cooling degree days do not occur at Prince Rupert Airport.

Sandspit Airport					
Month	HDD	CDD	Season		
April	365		Winter		
Мау	280		Shoulder		
June	195		Summer		
July	136		Summer		
August	107		Summer		
September	158		Summer		
October	276		Shoulder		
November	349		Winter		
December	447		Winter		
January	513		Winter		
February	414		Winter		
March	404		Winter		

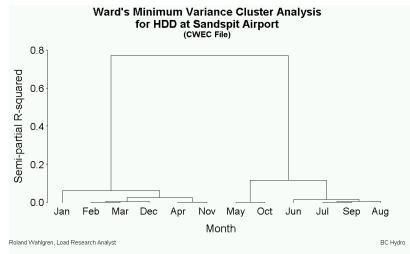


Figure A-1-14: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March, April); and Shoulder months (May, October)

Cooling degree days do not occur at Sandspit Airport.

Smithers Airport						
Month	HDD	CDD	Season			
April	403		Shoulder			
Мау	295		Shoulder			
June	174		Summer			
July	87	20	Summer			
August	124	2	Summer			
September	134		Shoulder			
October	416		Shoulder			
November	654		Winter			
December	805		Winter			
January	820		Winter			
February	612		Winter			
March	606		Winter			

Table	A-1-9:	Results	from	CWEC	data	set for	Smithers
1 aore		reoutes	110111	01120	autu	000101	ommenters

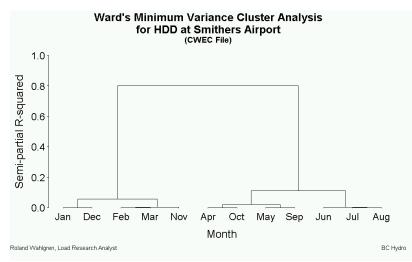


Figure A-1-15: Cluster analysis result: Summer months (June, July, August); Winter months (November, December, January, February, March); and Shoulder months (April, May, September, October)

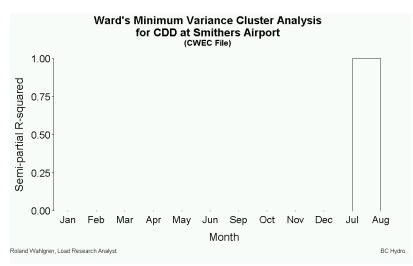


Figure A-1-16: Cooling degree days occur in July, and August

Table A-1-10: Results from CV	WEC data set for Summerland
-------------------------------	-----------------------------

Summerland CDA				
Month	HDD	CDD	Season	
April	279		Shoulder	
Мау	133	3	Summer	
June	42	38	Summer	
July	19	84	Summer	
August	21	59	Summer	
September	114	15	Summer	
October	281		Shoulder	
November	423		Winter	
December	573		Winter	
January	611		Winter	
February	463		Winter	
March	429		Winter	

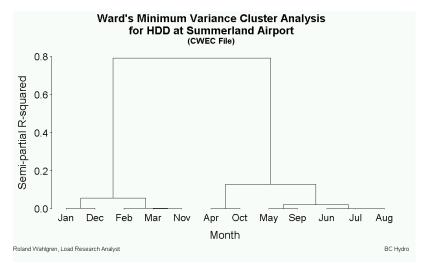


Figure A-1-17: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

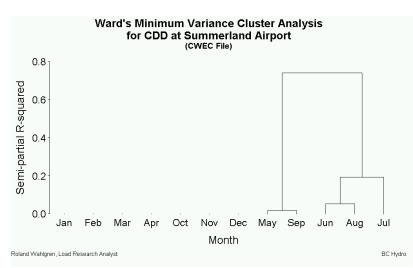
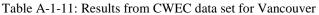



Figure A-1-18: Cooling degree days occur in May, June, July, August, and September

Vancouver International Airport				
Month	HDD	CDD	Season	
April	279		Shoulder	
Мау	191		Shoulder	
June	88		Summer	
July	35	3	Summer	
August	30	1	Summer	
September	127		Summer	
October	253		Shoulder	
November	382		Winter	
December	445		Winter	
January	459		Winter	
February	361		Winter	
March	369		Winter	

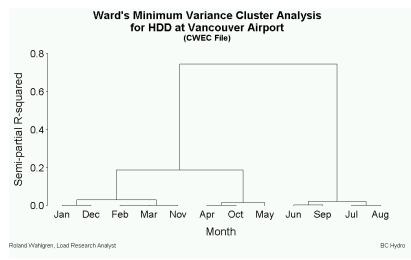


Figure A-1-19: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, May, October)

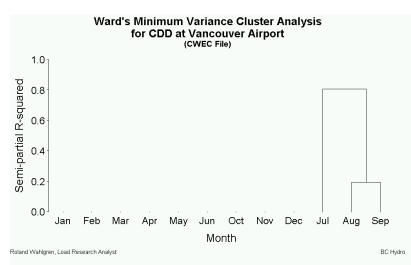


Figure A-1-20: Cooling degree days occur in July, August, and September

Victoria International Airport			
Month	HDD	CDD	Season
April	285		Shoulder
Мау	196		Summer
June	111		Summer
July	73	5	Summer
August	62	3	Summer
September	146		Summer
October	254		Shoulder
November	346		Winter
December	426		Winter
January	441		Winter
February	368		Winter
March	367		Winter

Table A-1-12: Results from CWEC data set for Victoria

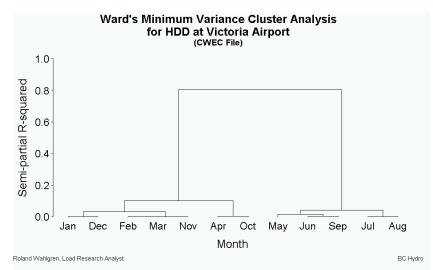


Figure A-1-21: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

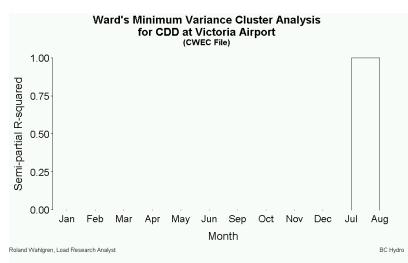


Figure A-1-22: Cooling degree days occur in July and August

Appendix 2

Results from Environment Canada multi-decade data sets

- Vancouver 1953 to 2008
- Vancouver 1953 to 1959
- Vancouver 1960 to 1969
- Vancouver 1970 to 1979
- Vancouver 1980 to 1989
- Vancouver 1990 to 1999
- Vancouver 2000 to 2008

• Victoria 1953 to 2008

- Victoria 1953 to 1959
- Victoria 1960 to 1969
- Victoria 1970 to 1979
- Victoria 1980 to 1989
- Victoria 1990 to 1999
- Victoria 2000 to 2008

• Kelowna 1953 to 2008

- Kelowna 1953 to 1959
- Kelowna 1960 to 1969
- Kelowna 1970 to 1979
- Kelowna 1980 to 1989
- Kelowna 1990 to 1999
- Kelowna 2000 to 2008

• Prince George 1953 to 2008

- Prince George 1953 to 1959
- Prince George 1960 to 1969
- Prince George 1970to 1979
- Prince George 1980 to 1989
- Prince George 1990 to 1999
- Prince George 2000 to 2008

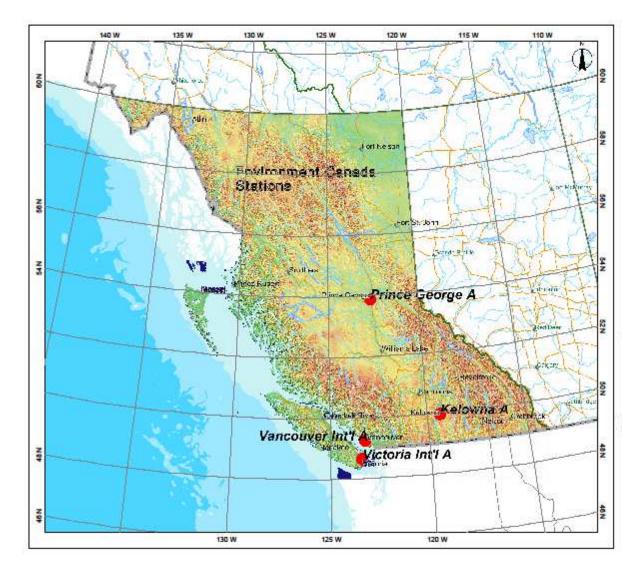


Figure A-2-1: Locations of Environment Canada stations at Vancouver Airport, Victoria Airport, Kelowna Airport, and Prince George Airport.

Table A-2-1: Results from EC data set for Vancouver 1953 to 2008

Vancouver International Airport				
Month	HDD	CDD	Season	
April	273		Shoulder	
Мау	169	2	Summer	
June	89	7	Summer	
July	35	20	Summer	
August	34	16	Summer	
September	110	2	Summer	
October	240		Shoulder	
November	359		Winter	
December	432		Winter	
January	447		Winter	
February	405		Winter	
March	355		Winter	

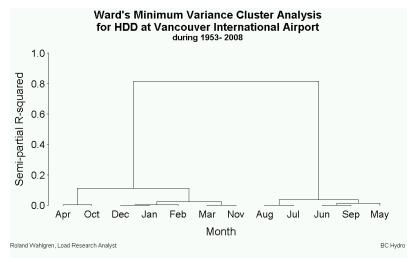


Figure A-2-2: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

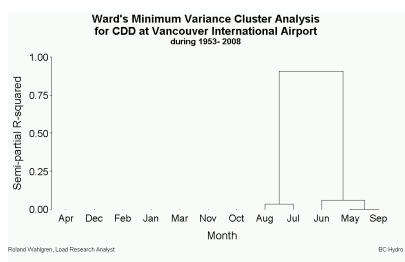


Figure A-2-3: Cooling degree days occur in May, June, July, August, and September

Table A-2-2: Results from EC data set for Vancouver	1953 to 1959
---	--------------

Vancouver International Airport			
Month	HDD	CDD	Season
April	278		Shoulder
Мау	152	2	Summer
June	97	12	Summer
July	38	26	Summer
August	39	8	Summer
September	113	1	Summer
October	247		Shoulder
November	368		Winter
December	411		Winter
January	456		Winter
February	429		Winter
March	382		Winter

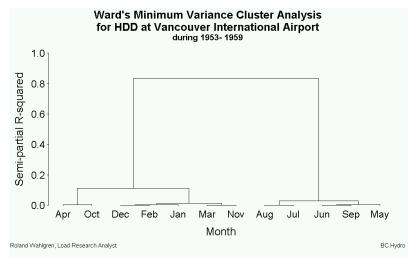


Figure A-2-4: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

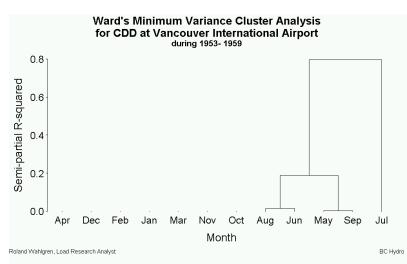


Figure A-2-5: Cooling degree days occur in May, June, July, August, and September

Table A-2-3: Results from EC data set for Vancouver 1960	to 1969
--	---------

Vancouver International Airport			
Month	HDD	CDD	Season
April	285		Shoulder
Мау	184	1	Shoulder
June	85	6	Summer
July	40	18	Summer
August	46	12	Summer
September	116	1	Summer
October	236		Shoulder
November	350		Winter
December	432		Winter
January	468		Winter
February	398		Winter
March	370		Winter

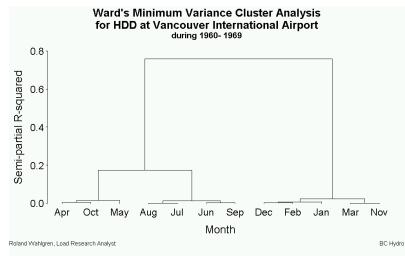


Figure A-2-6: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, May October)

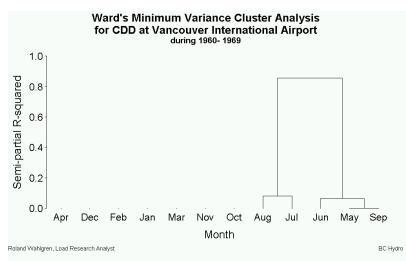


Figure A-2-7: Cooling degree days occur in May, June, July, August, and September

Table A-2-4: Results from EC data set for Vancouver 1970 to 1979

Vancouver International Airport			
Month	HDD	CDD	Season
April	292		Shoulder
Мау	190		Summer
June	103	4	Summer
July	44	15	Summer
August	46	13	Summer
September	125	1	Summer
October	256		Shoulder
November	383		Winter
December	441		Winter
January	478		Winter
February	411		Winter
March	367		Winter

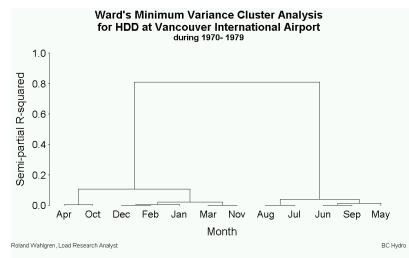


Figure A-2-8: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

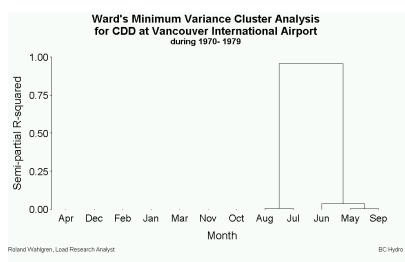


Figure A-2-9: Cooling degree days occur in May, June, July, August, and September

Table A-2-5: Results from EC data set for Vancouver 1980	to 1989
--	---------

Vancouver International Airport			
Month	HDD	CDD	Season
April	271		Shoulder
Мау	173	6	Summer
June	92	7	Summer
July	40	13	Summer
August	32	14	Summer
September	117	3	Summer
October	237		Shoulder
November	360		Winter
December	445		Winter
January	435		Winter
February	405		Winter
March	339		Winter

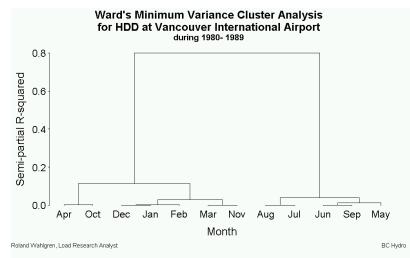


Figure A-2-10: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

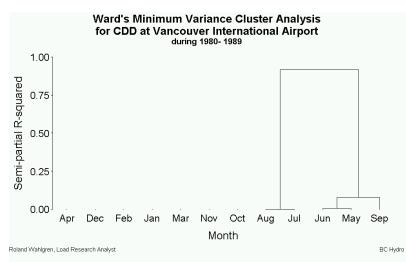


Figure A-2-11: Cooling degree days occur in May, June, July, August, and September

Table A-2-6: Results from EC data set for Vancouver 1990 to 1999

Vancouver International Airport				
Month	HDD	CDD	Season	
April	250		Shoulder	
Мау	150	1	Summer	
June	82	6	Summer	
July	26	23	Summer	
August	23	25	Summer	
September	89	3	Summer	
October	234		Shoulder	
November	344		Winter	
December	435		Winter	
January	429		Winter	
February	393		Winter	
March	336		Winter	

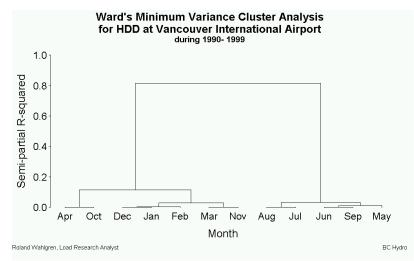


Figure A-2-12: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

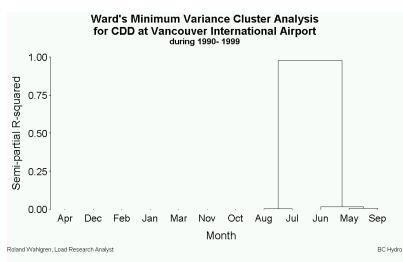


Figure A-2-13: Cooling degree days occur in May, June, July, August, and September

Table A-2-7: Results from EC data set for Vancouver 2000 to 2008

Vancouver International Airport				
Month	HDD	CDD	Season	
April	264		Shoulder	
Мау	161	2	Summer	
June	79	9	Summer	
July	19	26	Summer	
August	21	18	Summer	
September	102	2	Summer	
October	231		Shoulder	
November	351		Winter	
December	424		Winter	
January	414		Winter	
February	399		Winter	
March	340		Winter	

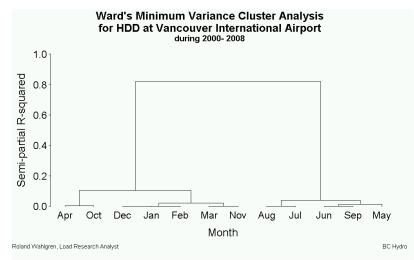


Figure A-2-14: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

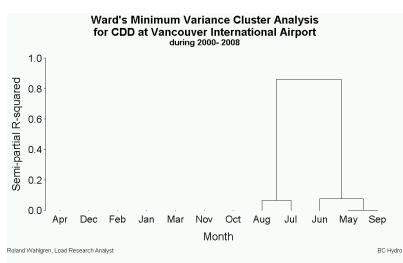


Figure A-2-15: Cooling degree days occur in May, June, July, August, and September

Table A-2-8: Results from EC data set for Victoria 1953 to 2008

Victoria International Airport				
Month	HDD	CDD	Season	
April	282		Shoulder	
Мау	184	3	Summer	
June	108	6	Summer	
July	55	12	Summer	
August	60	8	Summer	
September	130	2	Summer	
October	250		Shoulder	
November	356		Winter	
December	418		Winter	
January	431		Winter	
February	400		Winter	
March	357		Winter	

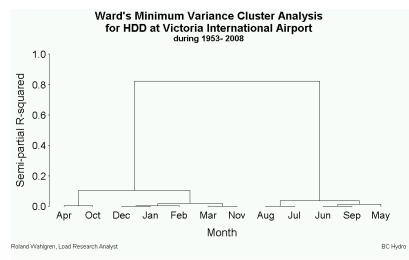


Figure A-2-16: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

Figure A-2-17: Cooling degree days occur in May, June, July, August, and September

Victoria International Airport				
Month	HDD	CDD	Season	
April	290		Shoulder	
Мау	170	2	Summer	
June	118	9	Summer	
July	65	17	Summer	
August	68	4	Summer	
September	130	2	Summer	
October	256		Shoulder	
November	364		Winter	
December	405		Winter	
January	442		Winter	
February	423		Winter	
March	384		Winter	

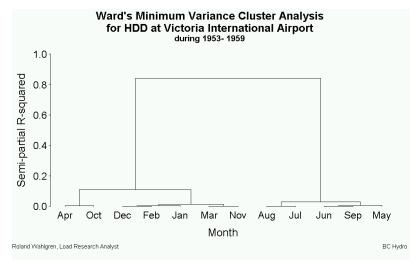


Figure A-2-18: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

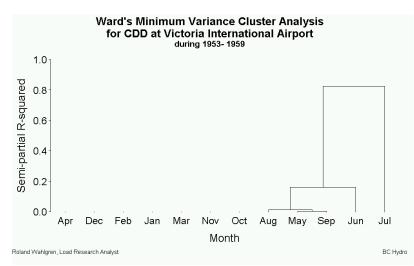


Figure A-2-19: Cooling degree days occur in May, June, July, August, and September

Table A-2-10: Results from EC data set for Victoria 1960 to 1969
--

Victoria International Airport				
Month	HDD	CDD	Season	
April	294		Winter	
Мау	197	3	Shoulder	
June	108	4	Summer	
July	60	12	Summer	
August	68	7	Summer	
September	136	2	Summer	
October	245		Shoulder	
November	352		Winter	
December	419		Winter	
January	448		Winter	
February	392		Winter	
March	370		Winter	

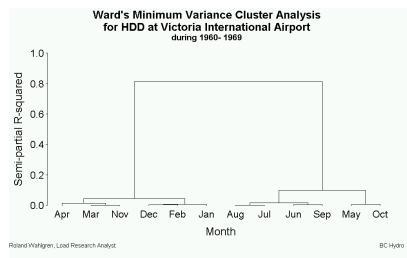


Figure A-2-20: Cluster analysis result: Summer months (June, July, August, September); Winter months (November, December, January, February, March, April); and Shoulder months (May, October)

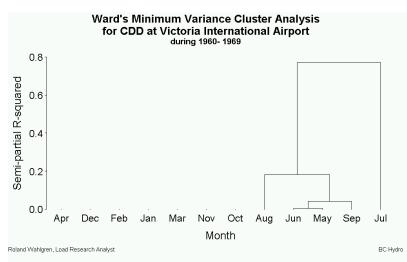


Figure A-2-21: Cooling degree days occur in May, June, July, August, and September

Victoria International Airport				
Month	HDD	CDD	Season	
April	298		Shoulder	
Мау	203	3	Summer	
June	121	3	Summer	
July	66	10	Summer	
August	74	9	Summer	
September	139	3	Summer	
October	261		Shoulder	
November	375		Winter	
December	424		Winter	
January	458		Winter	
February	405		Winter	
March	370		Winter	

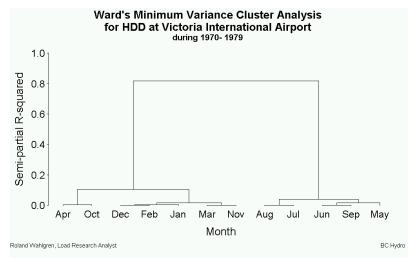


Figure A-2-22: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

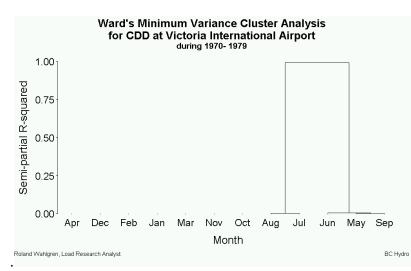


Figure A-2-23: Cooling degree days occur in May, June, July, August, and September

Victoria International Airport				
Month	HDD	CDD	Season	
April	277		Shoulder	
Мау	189	4	Summer	
June	111	5	Summer	
July	60	7	Summer	
August	57	9	Summer	
September	135	3	Summer	
October	247		Shoulder	
November	356		Winter	
December	430		Winter	
January	420		Winter	
February	403		Winter	
March	345		Winter	

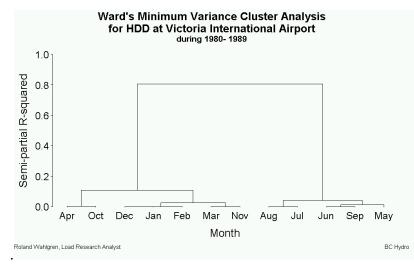


Figure A-2-24: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

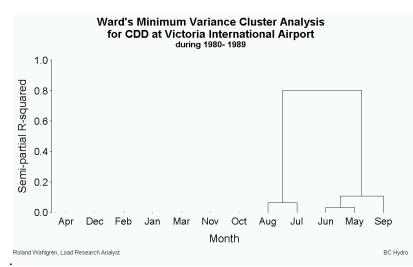


Figure A-2-25: Cooling degree days occur in May, June, July, August, and September

Table A-2-13: Results from EC data set for Victoria 1990 to 1999
--

Victoria International Airport				
Month	HDD	CDD	Season	
April	260		Shoulder	
Мау	164	1	Summer	
June	100	5	Summer	
July	44	15	Summer	
August	47	10	Summer	
September	115	1	Summer	
October	247		Shoulder	
November	338		Winter	
December	410		Winter	
January	411		Winter	
February	384		Winter	
March	338		Winter	

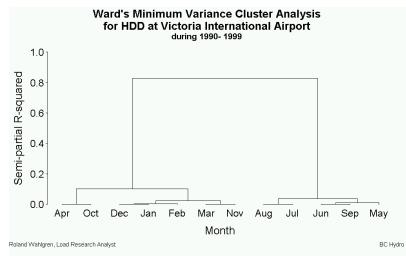


Figure A-2-26: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

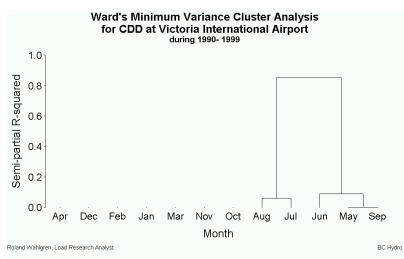


Figure A-2-27: Cooling degree days occur in May, June, July, August, and September

Victoria International Airport				
Month	HDD	CDD	Season	
April	274		Shoulder	
Мау	176	3	Summer	
June	92	9	Summer	
July	37	16	Summer	
August	45	8	Summer	
September	123	2	Summer	
October	242		Shoulder	
November	354		Winter	
December	412		Winter	
January	405		Winter	
February	400		Winter	
March	342		Winter	

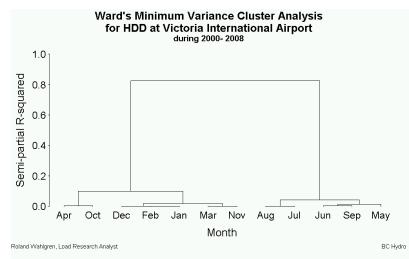


Figure A-2-28: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

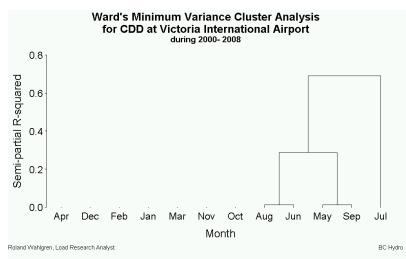


Figure A-2-29: Cooling degree days occur in May, June, July, August, and September

Table A-2-15: Results from EC data set for Prince George 1953 to 2008

Prince George Airport			
Month	HDD	CDD	Season
April	409	1	Shoulder
Мау	246	3	Summer
June	142	7	Summer
July	86	13	Summer
August	115	9	Summer
September	253	1	Summer
October	413		Shoulder
November	625		Winter
December	767		Winter
January	842		Winter
February	711		Winter
March	579		Winter

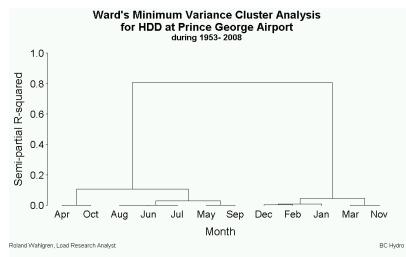


Figure A-2-30: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

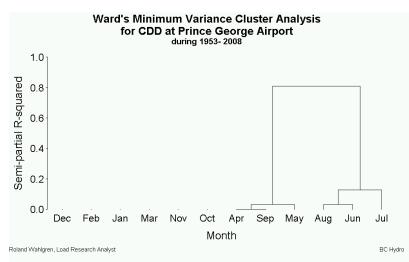


Figure A-2-31: Cooling degree days occur in April, May, June, July, August, and September

Prince George Airport			
Month	HDD	CDD	Season
April	455		Shoulder
Мау	229	1	Summer
June	151	12	Summer
July	97	12	Summer
August	144	4	Summer
September	255		Summer
October	427		Shoulder
November	629		Winter
December	730		Winter
January	934		Winter
February	778		Winter
March	630		Winter

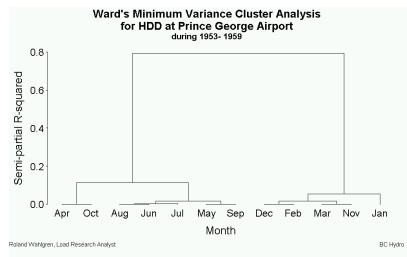


Figure A-2-32: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

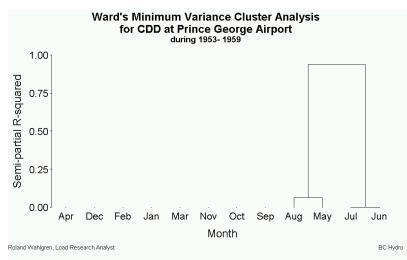


Figure A-2-33: Cooling degree days occur in May, June, July, and August

Table A-2-17: Results from EC data set for Prince George 1960 to 1969

Prince George Airport			
Month	HDD	CDD	Season
April	419		Shoulder
Мау	268	1	Shoulder
June	148	6	Summer
July	85	11	Summer
August	121	9	Summer
September	259		Shoulder
October	400		Shoulder
November	621		Winter
December	783		Winter
January	879		Winter
February	683		Winter
March	599		Winter

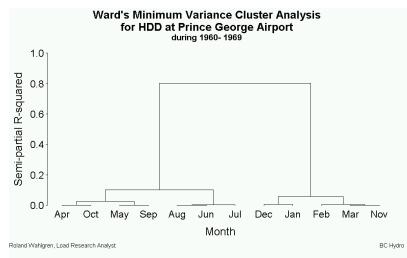


Figure A-2-34: Cluster analysis result: Summer months (June, July, August); Winter months (November, December, January, February, March); and Shoulder months (April, May, September, October)

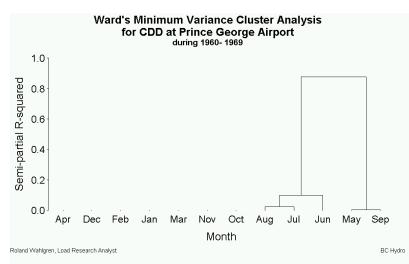


Figure A-2-35: Cooling degree days occur in May, June, July, August, and September (0.3 CDD, not shown in Table A-2-17 whose values are rounded to nearest integer)

Table A-2-18: Results from EC data set for Prince George 1970 to 1979

Prince George Airport			
Month	HDD	CDD	Season
April	410	1	Shoulder
Мау	266	2	Shoulder
June	157	4	Summer
July	98	16	Summer
August	116	7	Summer
September	270		Shoulder
October	411		Shoulder
November	661		Winter
December	804		Winter
January	904		Winter
February	736		Winter
March	580		Winter

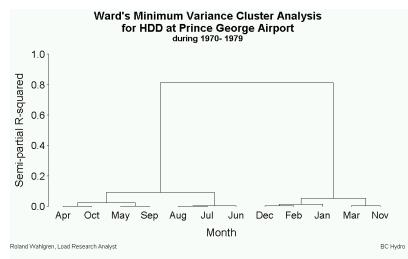


Figure A-2-36: Cluster analysis result: Summer months (June, July, August); Winter months (November, December, January, February, March); and Shoulder months (April, May, September, October)

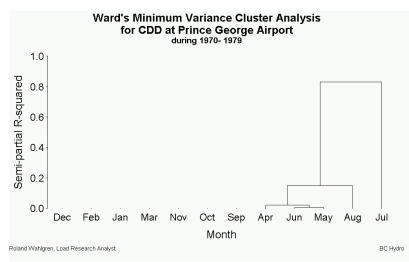


Figure A-2-37: Cooling degree days occur in April, May, June, July, and August

Table A-2-19: Results from EC data set for Prince George 1980 to 1989

Prince George Airport			
Month	HDD	CDD	Season
April	397		Shoulder
Мау	240	17	Summer
June	141	6	Summer
July	87	10	Summer
August	114	7	Summer
September	258	2	Summer
October	400		Shoulder
November	625		Winter
December	785		Winter
January	763		Winter
February	715		Winter
March	558		Winter

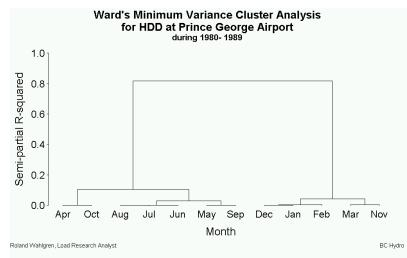


Figure A-2-38: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

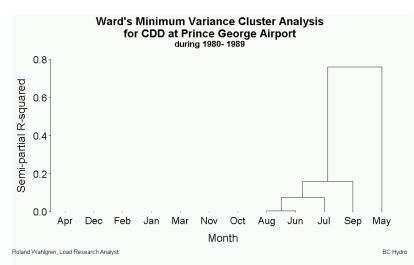


Figure A-2-39: Cooling degree days occur in May, June, July, August, and September

Table A-2-20: Results from EC data set for Prince George 1990 to 1999

Prince George Airport			
Month	HDD	CDD	Season
April	382		Shoulder
Мау	221	5	Summer
June	129	8	Summer
July	73	12	Summer
August	93	15	Summer
September	224	1	Summer
October	427		Shoulder
November	617		Winter
December	748		Winter
January	832		Winter
February	669		Winter
March	553		Winter

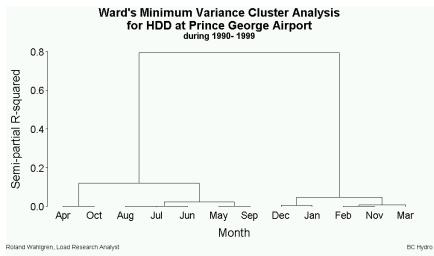


Figure A-2-40: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

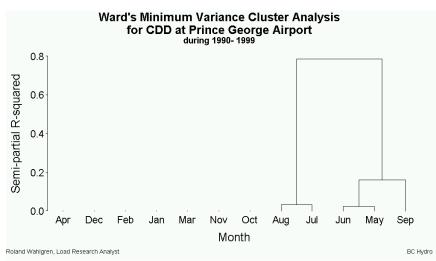


Figure A-2-41: Cooling degree days occur in May, June, July, August, and September

Table A-2-21: Results from EC data set for Prince George 2000 to 2008

Prince George Airport			
Month	HDD	CDD	Season
April	406		Shoulder
Мау	245	3	Summer
June	124	8	Summer
July	80	15	Summer
August	112	10	Summer
September	253	1	Summer
October	416		Shoulder
November	595		Winter
December	737		Winter
January	759		Winter
February	702		Winter
March	567		Winter

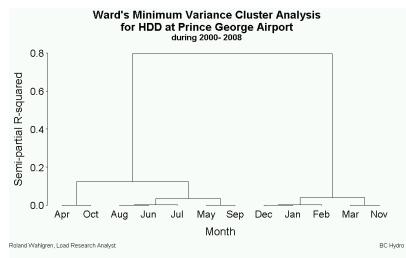


Figure A-2-42: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

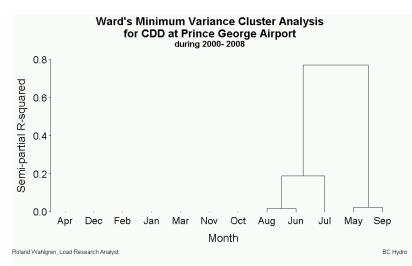


Figure A-2-43: Cooling degree days occur in May, June, July, August, and September

Table A-2-22: Results from EC data set for Kelowna 1960 to 2004

Kelowna Airport			
Month	HDD	CDD	Season
April	271	2	Shoulder
Мау	134	14	Summer
June	46	52	Summer
July	16	102	Summer
August	23	84	Summer
September	128	13	Summer
October	310	1	Shoulder
November	496		Winter
December	619		Winter
January	658		Winter
February	568		Winter
March	430		Winter

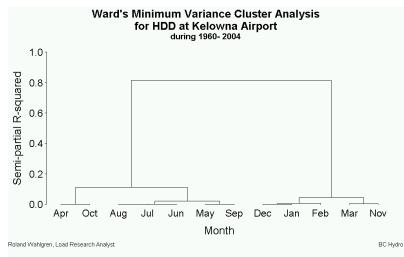


Figure A-2-44: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

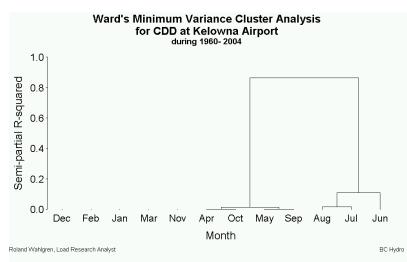


Figure A-2-45: Cooling degree days occur in April, May, June, July, August, September, and October

Table A-2-23: Results from EC data set for Kelowna 1960 to 1969

Kelowna Airport			
Month	HDD	CDD	Season
April	232	2	Shoulder
May	91	24	Summer
June	20	92	Summer
July	7	157	Summer
August	16	132	Summer
September	84	30	Summer
October	259	1	Shoulder
November	465		Winter
December	595		Winter
January	653		Winter
February	529		Winter
March	408		Winter

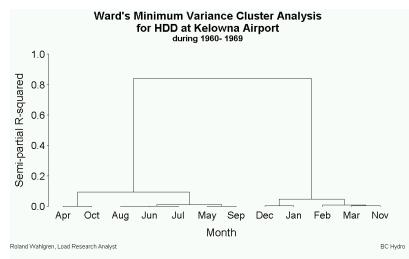


Figure A-2-46: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October

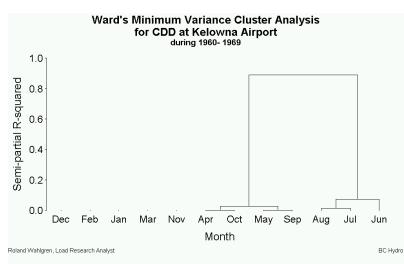


Figure A-2-47: Cooling degree days occur in April, May, June, July, August, September, and October

Table A-2-24: Results	s from EC data set for	Kelowna	1970 to 1979
-----------------------	------------------------	---------	--------------

Kelowna Airport			
Month	HDD	CDD	Season
April	311		Shoulder
Мау	170	4	Summer
June	63	28	Summer
July	21	78	Summer
August	32	62	Summer
September	158	2	Summer
October	345		Shoulder
November	520		Shoulder
December	634		Winter
January	711		Winter
February	597		Winter
March	468		Shoulder

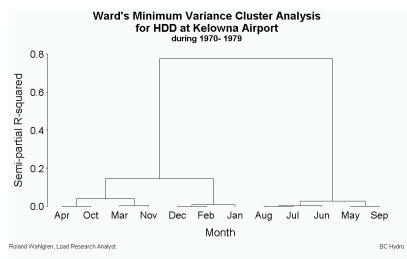


Figure A-2-48: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (December, January, February); and Shoulder months (March, April, October, November)

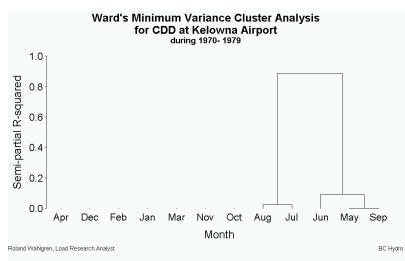


Figure A-2-49: Cooling degree days occur in May, June, July, August, and September

Table A-2-25: F	Results from E	C data set for	Kelowna	1980 to 1989
-----------------	----------------	----------------	---------	--------------

Kelowna Airport					
Month	HDD	CDD	Season		
April	272		Shoulder		
Мау	136	9	Summer		
June	51	44	Summer		
July	22	82	Summer		
August	20	62	Summer		
September	144	9	Summer		
October	321		Shoulder		
November	503		Shoulder		
December	639		Winter		
January	630		Winter		
February	582		Winter		
March	416		Shoulder		

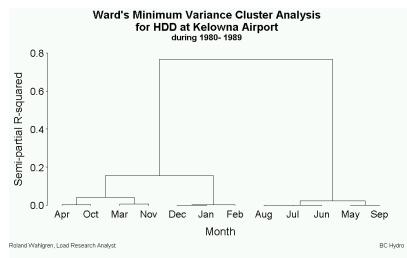


Figure A-2-50: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (December, January, February); and Shoulder months (March, April, October, November)

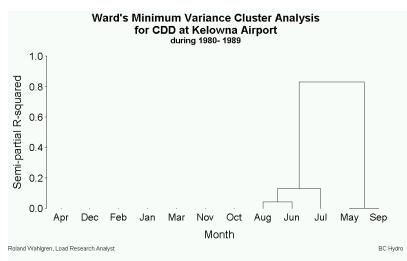


Figure A-2-51: Cooling degree days occur in May, June, July, August, and September

Table A-2-26: Results from EC data set for Kelowna 1990 to 1999

Kelowna Airport					
Month	HDD	CDD	Season		
April	250		Shoulder		
Мау	114	22	Summer		
June	48	45	Summer		
July	13	82	Summer		
August	21	91	Summer		
September	103	8	Summer		
October	310		Shoulder		
November	498		Winter		
December	641		Winter		
January	657		Winter		
February	553		Winter		
March	408		Winter		

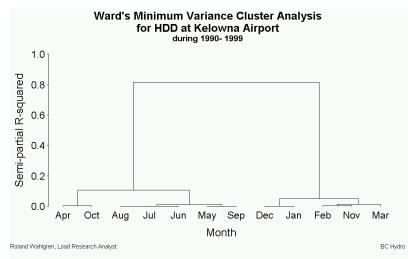


Figure A-2-52: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

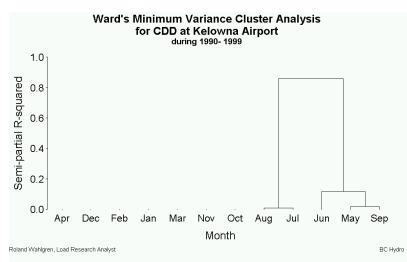


Figure A-2-53: Cooling degree days occur in May, June, July, August, and September

Table A-2-27: Results from EC data set for Kelowna 2000 to 2004

Kelowna Airport					
Month	HDD	CDD	Season		
April	285		Shoulder		
Мау	169	1	Summer		
June	43	45	Summer		
July	7	109	Summer		
August	18	70	Summer		
September	143	7	Summer		
October	329		Shoulder		
November	509		Winter		
December	556		Winter		
January	595		Winter		
February	565		Winter		
March	446		Winter		

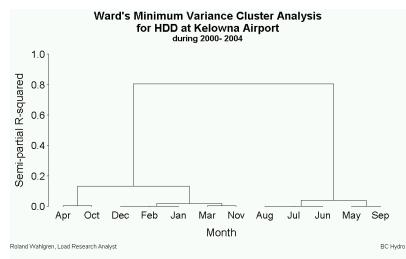


Figure A-2-52: Cluster analysis result: Summer months (May, June, July, August, September); Winter months (November, December, January, February, March); and Shoulder months (April, October)

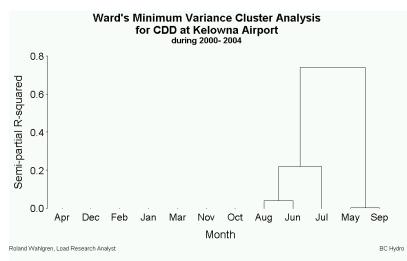


Figure A-2-53: Cooling degree days occur in May, June, July, August, and September